【題目】

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), 為直線的傾斜角,且),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)若直線經(jīng)過圓的圓心,求直線的傾斜角;

(2)若直線與圓交于, 兩點(diǎn),且,點(diǎn),求的取值范圍.

【答案】(1) (2)

【解析】試題分析:

1)由題知,直線經(jīng)過定點(diǎn)且直線過圓心,由斜率公式可得直線的斜率為,則傾斜角為.

2聯(lián)立直線的參數(shù)方程與圓的直角坐標(biāo)方程可得,設(shè), 兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為 ,由韋達(dá)定理結(jié)合直線參數(shù)方程的幾何意義可得 ,結(jié)合角的范圍和三角函數(shù)的性質(zhì)可得的取值范圍為.

試題解析:

1)由題知,直線經(jīng)過定點(diǎn),

的直角坐標(biāo)方程為,圓心為,

∴直線的斜率為

故直線的傾斜角為.

2)將為參數(shù))代入,

當(dāng)時(shí),

設(shè), 兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,

, ,

,

,

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列是公差大于的等差數(shù)列, 為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,設(shè)是數(shù)列的前項(xiàng)和,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有兩個(gè)不同的零點(diǎn).

(1)求的取值范圍;

(2)設(shè), 的兩個(gè)零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中隨機(jī)抽取部分高一學(xué)生調(diào)查其上學(xué)路上所需時(shí)間頻(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為.

(1)求直方圖中的值;

(2)如果上學(xué)路上所需時(shí)間不少于1小時(shí)的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,若招生 1200名請(qǐng)估計(jì)新生中有多少名學(xué)生可以申請(qǐng)住宿;

(3)從學(xué)校的高一學(xué)生中任選4名學(xué)生,這4名學(xué)生中上學(xué)路上所需時(shí)間少于 40分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的四棱錐中,底面與側(cè)面垂直,且四邊形為正方形, ,點(diǎn)為邊的中點(diǎn),點(diǎn)在邊上,且,過, , 三點(diǎn)的截面與平面的交線為,則異面直線所成的角為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天水市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,

得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.


優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

10



乙班


30


合計(jì)



110

1)請(qǐng)完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為成績與班級(jí)有關(guān)系;

3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從211進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。

參考公式與臨界值表:。


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線恒過定點(diǎn).

若直線經(jīng)過點(diǎn)且與直線垂直,求直線的方程;

若直線經(jīng)過點(diǎn)且坐標(biāo)原點(diǎn)到直線的距離等于3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z滿足|z|,z的實(shí)部大于0z2的虛部為2.

1)求復(fù)數(shù)z;

2)設(shè)復(fù)數(shù)zz2,zz2之在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為AB,C,求(的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)的圖象與軸的交點(diǎn)個(gè)數(shù)不少于2個(gè),則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案