若點(diǎn)的坐標(biāo)為,是拋物線的焦點(diǎn),點(diǎn)在拋物線上移動(dòng)時(shí),使取得最小值的的坐標(biāo)為(   )

A.B.C.D.

D

解析試題分析:求出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,把|MF|+|MA|轉(zhuǎn)化為|MA|+|PM|,利用 當(dāng)P、A、M三點(diǎn)共線時(shí),|MA|+|PM|取得最小值,把y=2代入拋物線y2="2x" 解得x值,即得M的坐標(biāo).解:由題意得 F(,0),準(zhǔn)線方程為 x=-,設(shè)點(diǎn)M到準(zhǔn)線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當(dāng)P、A、M三點(diǎn)共線時(shí),|MF|+|MA|取得最小值為|AP|=3-(-)=.把 y=2代入拋物線y2="2x" 得 x=2,故點(diǎn)M的坐標(biāo)是(2,2),故選D.
考點(diǎn):拋物線的定義和性質(zhì)
點(diǎn)評(píng):本題考查拋物線的定義和性質(zhì)得應(yīng)用,解答的關(guān)鍵利用是拋物線定義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)雙曲線的右焦點(diǎn)為,過(guò)點(diǎn)作與軸垂直的直線交兩漸近線于A,B兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,設(shè)O為坐標(biāo)原點(diǎn),若 (),且,則該雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

曲線C1:,曲線C2,EF是曲線C1的任意一條直徑,P是曲線C2上任一點(diǎn),則·的最小值為 (   )

A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

存在兩條直線與雙曲線相交于ABCD四點(diǎn),若四邊形ABCD是正方形,則雙曲線的離心率的取值范圍為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

如果橢圓上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離為(    )

A.10 B.6 C.12 D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

過(guò)雙曲線的左焦點(diǎn)作圓的切線交雙曲線右支于點(diǎn),切點(diǎn)為,若,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知是雙曲線的左、右焦點(diǎn),過(guò)且垂直于軸的直線與雙曲線交于兩點(diǎn),若△是銳角三角形,則該雙曲線離心率的取值范圍是(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知橢圓與曲線的離心率互為倒數(shù),則(  )

A.16 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知平面上兩點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P使|PM|-|PN|=6,則稱(chēng)該直線為“單曲型直線”,下列直線中是“單曲型直線”的是(  )
;   ②y=2;  ③;  ④.

A.①③ B.③④ C.②③ D.①②

查看答案和解析>>

同步練習(xí)冊(cè)答案