【題目】關(guān)于函數(shù)有下述四個結(jié)論:

的圖象關(guān)于點對稱的最大值為

在區(qū)間上單調(diào)遞增是周期函數(shù)且最小正周期為

其中所有正確結(jié)論的編號是( )

A.①②B.①③C.①④D.②④

【答案】D

【解析】

可證明,故正確;由于,的一個周期,設(shè),則,換元令,設(shè),求導,求單調(diào)區(qū)間,極值,得最大值為,故不正確;由得,在區(qū)間上沒有單調(diào)性,故不正確;由得,的一個周期,用反證法證明最小正周期為,故正確.

,所以成立.

因為,所以的一個周期,

不妨設(shè),則,

,令,則有,

,

遞增區(qū)間是遞減區(qū)間是,

的極大值為,,所以最大值不為.

時,

知,在該區(qū)間內(nèi)有增有減,故不單調(diào).

,

故該函數(shù)為周期函數(shù),若,

,

故該函數(shù)最小正周期為.

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】德陽中學數(shù)學競賽培訓共開設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學競賽復賽的資格,現(xiàn)有甲、乙、丙三位同學報名參加數(shù)學競賽培訓,每一位同學對這四門課程考試是否合格相互獨立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨立,


初等代數(shù)

初等幾何

初等數(shù)論

微積分初步

合格的概率





1)求甲同學取得參加數(shù)學競賽復賽的資格的概率;

2)記表示三位同學中取得參加數(shù)學競賽復賽的資格的人數(shù),求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學家哈代說過:“數(shù)學家的造型,同畫家和詩人一樣,也應(yīng)當是美麗的”;古希臘數(shù)學家畢達哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國古代數(shù)學家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點的橢圓和拋物線有相同的焦點,橢圓過點,拋物線的頂點為原點.

求橢圓和拋物線的方程;

設(shè)點P為拋物線準線上的任意一點,過點P作拋物線的兩條切線PA,PB,其中A,B為切點.

設(shè)直線PA,PB的斜率分別為,,求證:為定值;

若直線AB交橢圓C,D兩點,,分別是的面積,試問:是否有最小值?若有,求出最小值;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正三棱錐中點, ,,過的平面截三棱錐的外接球所得截面的面積范圍為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設(shè)冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認為“對冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

55

合計

(2)已知在被調(diào)查的女生中有5名數(shù)學系的學生,其中3名對冰球有興趣,現(xiàn)在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù)有以下三個判斷

①函數(shù)恒有兩個零點且兩個零點之積為-1;

②函數(shù)恒有兩個極值點且兩個極值點之積為-1;

③若是函數(shù)的一個極值點,則函數(shù)極小值為-1.

其中正確判斷的個數(shù)有( )

A.0B.1C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-平面ABC,D,EF,G分別為AC,,的中點,AB=BC=,AC==2.

求證AC平面BEF;

求二面角B-CD-C1的余弦值

證明直線FG與平面BCD相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個有窮數(shù)列每相鄰兩項之間添加一項,使其等于兩相鄰項的和,我們把這樣的操作叫做該數(shù)列的一次“H擴展”. 已知數(shù)列1,2. 第一次“H擴展”后得到1,3,2;第二次“H擴展”后得到1,4,35,2; 那么第10次“H擴展”后得到的數(shù)列的所有項的和為( )

A.88572B.88575C.29523D.29526

查看答案和解析>>

同步練習冊答案