年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列中,已知,,(,).
(1)當(dāng),時(shí),分別求的值,判斷是否為定值,并給出證明;
(2)求出所有的正整數(shù),使得為完全平方數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
將正整數(shù)12分解成兩個(gè)正整數(shù)的乘積有,,三種,其中是這三種分解中,兩數(shù)差的絕對(duì)值最小的,我們稱(chēng)為12的最佳分解.當(dāng)是正整數(shù)的最佳分解時(shí),我們規(guī)定函數(shù),例如.關(guān)于函數(shù)有下列敘述:①,②,③,④.其中正確的序號(hào)為 (填入所有正確的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
觀察下列等式:根據(jù)上述規(guī)律,第五個(gè)等式為_(kāi)_____________________________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在解決問(wèn)題:“證明數(shù)集沒(méi)有最小數(shù)”時(shí),可用反證法證明.
假設(shè)是中的最小數(shù),則取,可得:,與假設(shè)中“是中的最小數(shù)”矛盾!那么對(duì)于問(wèn)題:“證明數(shù)集沒(méi)有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)是中的最大數(shù),則可以找到 ▲ (用,表示),由此可知,,這與假設(shè)矛盾!所以數(shù)集沒(méi)有最大數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在平面幾何里,有:“若的三邊長(zhǎng)分別為內(nèi)切圓半徑為,則三角形面積為”,拓展到空間,類(lèi)比上述結(jié)論,“若四面體的四個(gè)面的面積分別為內(nèi)切球的半徑為,則四面體的體積為 ”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
“無(wú)理數(shù)是無(wú)限小數(shù),而是無(wú)限小數(shù),所以是無(wú)理數(shù)!
這個(gè)推理是 _推理(在“歸納”、“類(lèi)比”、“演繹”中選擇填空)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com