【題目】在平面幾何中,通常將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.最小覆蓋圓滿足以下性質(zhì):①線段的最小覆蓋圓就是以為直徑的圓;②銳角的最小覆蓋圓就是其外接圓.已知曲線,,,為曲線上不同的四點(diǎn).

(Ⅰ)求實(shí)數(shù)的值及的最小覆蓋圓的方程;

(Ⅱ)求四邊形的最小覆蓋圓的方程;

(Ⅲ)求曲線的最小覆蓋圓的方程.

【答案】(Ⅰ),;(Ⅱ);(Ⅲ).

【解析】

(Ⅰ)由題意,,利用三角形的外接圓即最小覆蓋圓可得結(jié)果;

(Ⅱ)的最小覆蓋圓就是以為直徑的圓,易知A,C均在圓內(nèi);

(Ⅲ)由題意,曲線為中心對(duì)稱圖形. 設(shè),轉(zhuǎn)求的最大值即可.

解:(Ⅰ)由題意,.

由于為銳角三角形,外接圓就是的最小覆蓋圓.

設(shè)外接圓方程為,

, 解得.

所以 的最小覆蓋圓的方程為 .

(II) 因?yàn)?/span>的最小覆蓋圓就是以為直徑的圓,

所以的最小覆蓋圓的方程為.

又因?yàn)?/span>,所以點(diǎn)A,C都在圓內(nèi).

所以四邊形的最小覆蓋圓的方程為.

(III)由題意,曲線為中心對(duì)稱圖形.

設(shè),則.

所以,且.

,

所以 當(dāng)時(shí),,

所以曲線的最小覆蓋圓的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點(diǎn),,

(I)證明:平面平面

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接2022年北京冬季奧運(yùn)會(huì), 某校開(kāi)設(shè)了冰球選修課,12名學(xué)生被分成甲、乙兩組進(jìn)行訓(xùn)練.他們的身高(單位:cm)如下圖所示:

設(shè)兩組隊(duì)員身高平均數(shù)依次為,,方差依次為,,則下列關(guān)系式中完全正確的是( )

A. =, =B. <,>

C. <,=D. <,<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心在軸上,且經(jīng)過(guò)點(diǎn),

(Ⅰ)求線段AB的垂直平分線方程;

(Ⅱ)求圓的標(biāo)準(zhǔn)方程;

(Ⅲ)過(guò)點(diǎn)的直線與圓相交于、兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),在區(qū)間內(nèi)任取兩個(gè)實(shí)數(shù),,且,若不等式恒成立,則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問(wèn)題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問(wèn)題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,求第2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的上下焦點(diǎn)分別為F1 , F2 , 離心率為 ,P為C上動(dòng)點(diǎn),且滿足 |,△QF1F2面積的最大值為4. (Ⅰ)求Q點(diǎn)軌跡E的方程和橢圓C的方程;
(Ⅱ)直線y=kx+m(m>0)與橢圓C相切且與曲線E交于M,N兩點(diǎn),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面凸四邊形中(凸四邊形指沒(méi)有角度數(shù)大于的四邊形),.

(1)若,,求;

(2)已知,記四邊形的面積為.

① 求的最大值;

② 若對(duì)于常數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.(直接寫(xiě)結(jié)果,不需要過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案