【題目】已知函數(shù)(常數(shù)).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線與直線相切,證明: .

【答案】(1) 的單增區(qū)間為,單減區(qū)間為;(2)見(jiàn)解析.

【解析】試題分析:(Ⅰ)求出, 得增區(qū)間, 得減區(qū)間;(Ⅱ)設(shè)曲線與直線的切點(diǎn)為,由,可得, ,其中,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性可得,即.

試題解析:(Ⅰ)函數(shù)的定義域?yàn)?/span>, .

,則,故單增.

,所以

當(dāng)時(shí), ,因而 單增,即的單增區(qū)間為

當(dāng)時(shí), ,因而 單減,即的單減區(qū)間為.

(Ⅱ)證明:設(shè)曲線與直線的切點(diǎn)為,

因?yàn)?/span>,所以,即.

因?yàn)橹本經(jīng)過(guò)切點(diǎn),所以

于是,有,即.

,則,故單增,

,

所以有唯一零點(diǎn),且.

再令,其中,

,故單減,

所以,即.

【方法點(diǎn)晴】本題主要考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式和導(dǎo)數(shù)的幾何意義,屬于難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)一步求函數(shù)最值的步驟:①確定函數(shù)的定義域;②對(duì)求導(dǎo);③令,解不等式得的范圍就是遞增區(qū)間;令,解不等式得的范圍就是遞減區(qū)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(﹣2,1), =(x,y)
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足 =﹣1的概率;
(2)若x,y在連續(xù)區(qū)間[1,6]上取值,求滿足 <0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的短軸長(zhǎng)為2,以為中點(diǎn)的弦經(jīng)過(guò)左焦點(diǎn),其中點(diǎn)不與坐標(biāo)原點(diǎn)重合,射線與以圓心的圓交于點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)若四邊形是矩形,求圓的半徑;

(Ⅲ)若圓的半徑為2,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有兩條相交成60°角的直線xx′,yy′,交點(diǎn)是O,甲、乙分別在Ox,Oy上,起初甲離O點(diǎn)3km,乙離O點(diǎn)1km,后來(lái)兩人同時(shí)用每小時(shí)4km的速度,甲沿xx′方向,乙沿y′y方向步行,問(wèn):

(1)用包含t的式子表示t小時(shí)后兩人的距離;
(2)什么時(shí)候兩人的距離最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值,并用an1表示an;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn= + + +…+ ,求證:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的值域?yàn)椋ī仭蓿?]∪[4,+∞),則a的值是(
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是(
A.
B. 與g(x)=2x﹣1
C.f(x)=x0與g(x)=1
D.f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l:y=3x+3.
(1)求點(diǎn)P(5,3)關(guān)于直線l的對(duì)稱點(diǎn)P′的坐標(biāo);
(2)求直線l1:x﹣y﹣2=0關(guān)于直線l的對(duì)稱直線l2的方程;
(3)已知點(diǎn)M(2,6),試在直線l上求一點(diǎn)N使得|NP|+|NM|的值最小.

查看答案和解析>>

同步練習(xí)冊(cè)答案