【題目】某校在本校任選了一個班級,對全班50名學(xué)生進行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下的列聯(lián)表,已知在這50人中隨機抽取2人,這2人都“認為作業(yè)量大”的概率為.

認為作業(yè)量大

認為作業(yè)量不大

合計

男生

18

女生

17

合計

50

(Ⅰ)請完成上面的列聯(lián)表;

(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“認為作業(yè)量大”與“性別”有關(guān)?

(Ⅲ)若視頻率為概率,在全校隨機抽取4人,其中“認為作業(yè)量大”的人數(shù)記為,求的分布列及數(shù)學(xué)期望.

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:

【答案】(Ⅰ)見解析(Ⅱ)有的把握認為“認為作業(yè)量大”與“性別”有關(guān)(Ⅲ)見解析

【解析】分析:(1)先設(shè)認為作業(yè)量大的共有個人,再求出x的值,完成列聯(lián)表.(2)先求出,再判斷是否有的把握認為“認為作業(yè)量大”與“性別”有關(guān).(3)利用二項分布求的分布列及數(shù)學(xué)期望.

詳解:(Ⅰ)設(shè)認為作業(yè)量大的共有個人,

,

解得(舍去);

認為作業(yè)量大

認為作業(yè)量不大

合計

男生

18

8

26

女生

7

17

24

合計

25

25

50

(Ⅱ)根據(jù)列聯(lián)表中的數(shù)據(jù),得

.

因此有的把握認為“認為作業(yè)量大”與“性別”有關(guān).

(Ⅲ)的可能取值為0,1,2,3,4.

由(Ⅰ)可知,在全校隨機抽取1人,“認為作業(yè)量大”的概率為.

由題意可知.

所以 .

所以的分布列為

0

1

2

3

4

(或).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,已知,,若點是線段上一點(不含端點),過

(1)若外接圓的直徑長為,求的值;

(2)求的最小值

(3)問點在何處時,的面積最大?最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點處的切線為, 軸的交點坐標為,求的值;

2)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ln(a x)+bx在點(1,f(1))處的切線是y=0;

(I)求函數(shù)f(x)的極值;

(II)當(dāng)恒成立時,求實數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓心角為,半徑為的扇形鐵皮上截取一塊矩形材料,其中點為圓心,點在圓弧上,點在兩半徑上,現(xiàn)將此矩形鐵皮卷成一個以為母線的圓柱形鐵皮罐的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長,圓柱形鐵皮罐的容積為.

(1)求圓柱形鐵皮罐的容積關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

(2)當(dāng)為何值時,才使做出的圓柱形鐵皮罐的容積最大?最大容積是多少? (圓柱體積公式:,為圓柱的底面枳,為圓柱的高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將參加數(shù)學(xué)競賽決賽的500名同學(xué)編號為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽的號碼為003,這500名學(xué)生分別在三個考點考試,從001到200在第一考點,從201到355在第二考點,從356到500在第三考點,則第二考點被抽中的人數(shù)為(
A.14
B.15
C.16
D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標方程為ρ=6sinθ,以極點O為原點,極軸為x軸的非負半軸建立直角坐標系,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)直線l與曲線C交于B,D兩點,當(dāng)|BD|取到最小值時,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有(  )

A. 4個B. 3個C. 2個D. 1個

查看答案和解析>>

同步練習(xí)冊答案