【題目】已知直線l:x+2y-2=0.
(1)求直線l1:y=x-2關(guān)于直線l對稱的直線l2的方程;
(2)求直線l關(guān)于點(diǎn)A(1,1)對稱的直線方程.
【答案】(1)7x-y-14=0;(2)x+2y-4=0.
【解析】
(1)先求出兩直線的交點(diǎn)P(2,0),再求出,即得直線l2的方程;(2)直線l關(guān)于點(diǎn)A(1,1)對稱的直線和直線l平行,所以設(shè)所求的直線方程為x+2y+m=0,求出m的值即得解.
(1)由解得交點(diǎn)P(2,0).
在l1上取點(diǎn)M(0,-2),
M關(guān)于l的對稱點(diǎn)設(shè)為N(a,b),
則,
解得,所以,
又直線l2過點(diǎn)P(2,0),
所以直線l2的方程為7x-y-14=0.
(2)直線l關(guān)于點(diǎn)A(1,1)對稱的直線和直線l平行,
所以設(shè)所求的直線方程為x+2y+m=0.
在l上取點(diǎn)B(0,1),則點(diǎn)B(0,1)關(guān)于點(diǎn)A(1,1)的對稱點(diǎn)C(2,1)必在所求的直線上,
所以,所以m=-4,
即所求的直線方程為x+2y-4=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,點(diǎn)在橢圓上.
求橢圓的方程;
已知與為平面內(nèi)的兩個定點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,D,E分別為AB,AC的中點(diǎn),,以DE為折痕將折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,如圖.
(1)證明:;
(2)若平面DEP平面BCED,求直線DC與平面BCP所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若為銳角,, ,求及的值;
(2)函數(shù),若對任意都有恒成立,求實(shí)數(shù)的最大值;
(3)已知,,求及的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且2,,成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和;
(3)對于(2)中的,設(shè),求數(shù)列中的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“倫敦眼”坐落在英國倫敦泰晤士河畔,是世界上首座觀景摩天輪,又稱“千禧之輪”,該摩天輪的半徑為6(單位:),游客在乘坐艙升到上半空鳥瞰倫敦建筑,倫敦眼與建筑之間的距離為12(單位:),游客在乘坐艙看建筑的視角為.
(1)當(dāng)乘坐艙在倫敦眼的最高點(diǎn)時(shí),視角,求建筑的高度;
(2)當(dāng)游客在乘坐艙看建筑的視角為時(shí),拍攝效果最好.若在倫敦眼上可以拍攝到效果最好的照片,求建筑的最低高度.
(說明:為了便于計(jì)算,數(shù)據(jù)與實(shí)際距離有誤差,倫敦眼的實(shí)際高度為)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客運(yùn)公司用、兩種型號的車輛承擔(dān)甲、乙兩地的長途客運(yùn)業(yè)務(wù),每車每天往返一次.、兩種型號的車輛的載客量分別是32人和48人,從甲地到乙地的營運(yùn)成本依次為1500元/輛和2000元/輛.公司擬組建一個不超過21輛車的車隊(duì),并要求種型號的車不多于種型號的車5輛.若每天從甲地運(yùn)送到乙地的旅客不少于800人,為使公司從甲地到乙地的營運(yùn)成本最小,應(yīng)配備、兩種型號的車各多少輛?并求出最小營運(yùn)成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
“直線l與平面平行”是“直線l在平面外”的充分不必要條件;
若p:,,則:,;
命題“設(shè)a,,若,則或”為真命題;
“”是“函數(shù)在上單調(diào)遞增”的充要條件.
其中所有正確結(jié)論的序號為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com