【題目】設(shè)分別是橢圓的左、右焦點(diǎn),過且斜率不為零的直線與橢圓交于兩點(diǎn),的周長為

1)求橢圓的方程

2)是否存在直線,使得為等腰直角三角形?若存在,求出直線的方程;若不存在,請(qǐng)說明理由

【答案】1;(2)不存在,見解析.

【解析】

1)根據(jù)焦點(diǎn)坐標(biāo)得的周長為,即,即可解得橢圓的方程;

2)分別討論將作為等腰直角三角形的斜邊和直角邊(即底邊和腰)的情況,即可得出矛盾.

1)由題橢圓的焦點(diǎn)坐標(biāo),所以,的周長為,即,,

所以橢圓的方程為;

2)不存在,理由如下:

當(dāng)為底邊時(shí),,根據(jù)橢圓對(duì)稱性,此時(shí)直線垂直于軸,其方程,

此時(shí)

,

所以不垂直,即為底邊時(shí)等腰頂角不為直角,所以不是等腰直角三角形;

當(dāng)為腰時(shí),必有,

假設(shè)為等腰直角三角形,不妨設(shè)為直角頂點(diǎn),設(shè),

,在中,由勾股定理,,

,解得:,此時(shí),

矛盾,所以不是等腰直角三角形,

綜上所述,不存在直線,使得為等腰直角三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線外一點(diǎn)M作拋物線的兩條切線,兩切點(diǎn)的連線段稱為點(diǎn)M對(duì)應(yīng)的切點(diǎn)弦已知拋物線為,點(diǎn)PQ在直線l上,過PQ兩點(diǎn)對(duì)應(yīng)的切點(diǎn)弦分別為AB,CD

當(dāng)點(diǎn)Pl上移動(dòng)時(shí),直線AB是否經(jīng)過某一定點(diǎn),若有,請(qǐng)求出該定點(diǎn)的坐標(biāo);如果沒有,請(qǐng)說明理由

當(dāng)時(shí),點(diǎn)P,Q在什么位置時(shí),取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),已知點(diǎn)及線段,在線段上任取一點(diǎn),線段長度的最小值稱為“點(diǎn)到線段的距離”,記為.

(1)設(shè)點(diǎn),線段 ,求;

(2)設(shè) , , ,線段,線段,若點(diǎn)滿足,求關(guān)于的函數(shù)解析式,并寫出該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,右頂點(diǎn)為,且過點(diǎn),圓是以線段為直徑的圓,經(jīng)過點(diǎn)且傾斜角為的直線與圓相切.

(1)求橢圓及圓的方程;

(2)是否存在直線,使得直線與圓相切,與橢圓交于兩點(diǎn),且滿足?若存在,請(qǐng)求出直線的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線=1(b∈N)的兩個(gè)焦點(diǎn)F1F2,P為雙曲線上一點(diǎn),|OP|5,|PF1|,|F1F2|,|PF2|成等比數(shù)列,則b2=_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過多年的運(yùn)作,雙十一搶購活動(dòng)已經(jīng)演變成為整個(gè)電商行業(yè)的大型集體促銷盛宴.為迎接2018雙十一網(wǎng)購狂歡節(jié),某廠家擬投入適當(dāng)?shù)膹V告費(fèi),對(duì)網(wǎng)上所售產(chǎn)品進(jìn)行促銷.經(jīng)調(diào)查測(cè)算,該促銷產(chǎn)品在雙十一的銷售量p萬件與促銷費(fèi)用x萬元滿足(其中,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),每一件產(chǎn)品的銷售價(jià)格定為元,假定廠家的生產(chǎn)能力完全能滿足市場(chǎng)的銷售需求.

1)將該產(chǎn)品的利潤y萬元表示為促銷費(fèi)用x萬元的函數(shù);

2)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?并求出最大利潤的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過點(diǎn),,,,為橢圓的四個(gè)頂點(diǎn)(如圖),直線過右頂點(diǎn)且垂直于軸.

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)上一點(diǎn)(軸上方),直線,分別交橢圓于兩點(diǎn),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知是曲線上的動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,點(diǎn),射線與曲線,分別相交于異于極點(diǎn)兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若關(guān)于的方程有兩個(gè)不同實(shí)數(shù)根,的取值范圍;

(2)若關(guān)于的不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案