如圖,正三棱柱ABC-A1B1C1的各棱長都相等,D、E分別是CC1和AB1的中點,點F在BC上且滿足BF∶FC=1∶3.

(1)若M為AB中點,求證:BB1∥平面EFM;

(2)求證:EF⊥BC;

(3)求二面角A1-B1D-C1的大小.

答案:
解析:

  (1)證明:連結(jié)EM、MF,∵M(jìn)、E分別是正三棱柱的棱AB和AB1的中點,

  ∴BB1∥ME,又BB1平面EFM,∴BB1∥平面EFM.

  (2)證明:取BC的中點N,連結(jié)AN由正三棱柱得.AN⊥BC,

  又BF∶FC=1∶3,∴F是BN的中點,故MF∥AN,

  ∴MF⊥BC,而BC⊥BB1,BB1∥ME.

  ∴ME⊥BC,由于MF∩ME=M,∴BC⊥平面EFM,

  又EF平面EFM,∴BC⊥EF.

  (3)解:取B1C1的中點O,連結(jié)A1O知,A1O⊥面BCC1B1,過點O作B1D的垂線OQ,垂足為Q,連結(jié)A1Q,由三垂線定理,A1Q⊥B1D,故∠A1QD為二面角A1-B1D-C的平面角,易得∠A1QD=arctan


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長都等于a,E是BB1的中點.
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1
(3)求點C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長都2,E,F(xiàn)分別是AB,A1C1的中點,則EF的長是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點O為AB1上的動點,當(dāng)OD∥平面ABC時,求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點.
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大。

查看答案和解析>>

同步練習(xí)冊答案