試證明:在平面上所有過點(diǎn)(
2
,0)的直線中,至少通過兩個有理點(diǎn)(有理點(diǎn)指橫、縱坐標(biāo)均為有理數(shù)的點(diǎn))的直線有且只有一條.
分析:①先證明直線的存在性:由于直線y=0經(jīng)過點(diǎn)(
2
,0),且至少經(jīng)過兩個有理點(diǎn)(0,0)、(1,0),可得一定存在滿足條件的直線.
②再證明唯一性:假設(shè)除了直線y=0外,經(jīng)過點(diǎn)(
2
,0),還有一條直線y=k(x-
2
) 經(jīng)過2個不同的有理點(diǎn)A(x1,y1)、B(x2,y2),求得k=
y1-y2
x1-x2
為有理數(shù).而由y1=k(x1-
2
)
可得k=
y1
x1-
2
是無理數(shù),矛盾,故假設(shè)不正確.綜合①②,命題得證.
解答:解:①先證明直線的存在性:
由于直線y=0經(jīng)過點(diǎn)(
2
,0),且至少經(jīng)過兩個有理點(diǎn)(0,0)、(1,0),故一定存在過點(diǎn)(
2
,0),且至少經(jīng)過兩個有理點(diǎn)的直線.
②再證明唯一性:假設(shè)除了直線y=0外,經(jīng)過點(diǎn)(
2
,0),還有一條直線y=k(x-
2
) 經(jīng)過2個不同的有理點(diǎn)A(x1,y1)、B(x2,y2),
其中,x1,y1,x2,y2都是有理數(shù),且x1≠x2,y1≠y2
則有 y1=k(x1-
2
)
,且y2=k(x2-
2
)
,∴y1-y2=k(x1-x2),∴k=
y1-y2
x1-x2
 為有理數(shù).
而由y1=k(x1-
2
)
 可得k=
y1
x1-
2
 是無理數(shù),矛盾,故假設(shè)不正確.
綜上,在平面上所有過點(diǎn)(
2
,0)的直線中,至少通過兩個有理點(diǎn)(有理點(diǎn)指橫、縱坐標(biāo)均為有理數(shù)的點(diǎn))的直線有且只有一條.
點(diǎn)評:本題主要考查直線的一般式方程,用反證法證明數(shù)學(xué)命題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

試證明:在平面上所有過點(diǎn)(
2
,0)的直線中,至少通過兩個有理點(diǎn)(有理點(diǎn)指橫、縱坐標(biāo)均為有理數(shù)的點(diǎn))的直線有且只有一條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試證明:在平面上所有通過點(diǎn)(,0)的直線中,至少通過兩個有理點(diǎn)(有理點(diǎn)指坐標(biāo)x、y均為有理數(shù)的點(diǎn))的直線有一條且只有一條.

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

設(shè)是平面直角坐標(biāo)系上的兩點(diǎn),現(xiàn)定義由點(diǎn)到點(diǎn)的一種折線距離

對于平面上給定的不同的兩點(diǎn),,

(1)若點(diǎn)是平面上的點(diǎn),試證明

(2)在平面上是否存在點(diǎn),同時(shí)滿足

    ②

若存在,請求出所有符合條件的點(diǎn),請予以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷E(十)(解析版) 題型:解答題

試證明:在平面上所有過點(diǎn)(,0)的直線中,至少通過兩個有理點(diǎn)(有理點(diǎn)指橫、縱坐標(biāo)均為有理數(shù)的點(diǎn))的直線有且只有一條.

查看答案和解析>>

同步練習(xí)冊答案