設(shè)是正方體的一條對角線,則這個正方體中面對角線與異面的有(  )   
A.0條B.4條C.6條D.12條
C
本題考查線線垂直,線面垂直的判定和性質(zhì),空間線線,線面關(guān)系的轉(zhuǎn)化及空間想象能力.
 
連接,因為是正方形,所以
,,所以
同理故選C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知球的體積與其表面積的數(shù)值相等,則此球的半徑為(   )
A.4B.3 C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,四邊形中,, .將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論正確的是
A.B.
C.與平面所成的角為D.四面體的體積為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
如圖,平面ABEF平面ABCD,四邊形ABEF與ABCD都是直角梯形,
(I)證明:C,D,F(xiàn),E四點共面;
(II)設(shè)AB=BC=BE,求二面角A—ED—B的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.     
(Ⅰ)若在邊BC上存在一點Q,使PQ⊥QD,求a的取值范圍;
(Ⅱ)當邊BC上存在唯一點Q,使PQ⊥QD時,求二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱錐中,,,,,, 點,分別在棱上,且,

(I)求證:平面;
(II)當的中點時,求與平面所成的角的大;
(III)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐的底面為菱形,平面,,、分別為、的中點。
(I)求證:平面
  (Ⅱ)求三棱錐的體積;
(Ⅲ)求平面與平面所成的銳二面角大小的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

三棱柱底面是邊長為1cm的正三角形,側(cè)面是長方形,側(cè)棱長為4cm,一個小蟲從A點出發(fā)沿表面一圈到達點,則小蟲所行的最短路程為__________cm

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯誤的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.異面直線ADCB所成的角為60°

查看答案和解析>>

同步練習冊答案