【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知動點(diǎn)都在曲線(為參數(shù),是與無關(guān)的正常數(shù))上,對應(yīng)參數(shù)分別為與,為的中點(diǎn).
(1)求的軌跡的參數(shù)方程;
(2)作一個伸壓變換:,求出動點(diǎn)點(diǎn)的參數(shù)方程,并判斷動點(diǎn)的軌跡能否過點(diǎn).
【答案】(1)(為參數(shù),,是與無關(guān)的正常數(shù));(2)動點(diǎn)點(diǎn)的參數(shù)方程為,不能過點(diǎn).
【解析】
(1)利用參數(shù)方程與中點(diǎn)坐標(biāo)公式即可得出;
(2)由已知得,動點(diǎn)點(diǎn)的參數(shù)方程為
兩等式平方后相加得,,若動點(diǎn)的軌跡過點(diǎn),則,導(dǎo)出矛盾.
解:(1)依題意得,,,因此,
的軌跡的參數(shù)方程為(為參數(shù),,是與無關(guān)的正常數(shù)).
(2)由已知得,動點(diǎn)點(diǎn)的參數(shù)方程為
兩等式平方后相加得,,
因?yàn)?/span>,所以,
所以,
若動點(diǎn)的軌跡過點(diǎn),則,矛盾,
所以動點(diǎn)的軌跡不能過點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園舉辦雕塑展覽吸引著四方賓客,旅游人數(shù)與人均消費(fèi)(元)的關(guān)系如下:.
(1)若游客客源充足,那么當(dāng)天接待游客多少人時,公園的旅游收入最多?
(2)若公園每天運(yùn)營成本為5萬元(不含工作人員的工資),還要上繳占旅游收入的稅收,其余自負(fù)盈虧,目前公園的工作人員維持在40人,要使工作人員平均每人每天的工資不低于100元,并維持每天正常運(yùn)營(不負(fù)債),每天的游客人數(shù)應(yīng)控制在怎樣的合理范圍內(nèi)?(注:旅游收入=旅游人數(shù)×人均消費(fèi))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有四個景點(diǎn),一位游客來該市游覽,已知該游客游覽的概率為,游覽、和的概率都是,且該游客是否游覽這四個景點(diǎn)相互獨(dú)立.
(1)求該游客至多游覽一個景點(diǎn)的概率;
(2)用隨機(jī)變量表示該游客游覽的景點(diǎn)的個數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點(diǎn).
(1)若,證明:函數(shù)必有局部對稱點(diǎn);
(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有≥成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光農(nóng)業(yè)科學(xué)研究所對冬季晝夜溫差大小與反季節(jié)土豆發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 26 | 32 | 26 | 16 |
設(shè)農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請根據(jù)11月2日至11月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費(fèi)用不超過9萬元,甲、乙電視臺的廣告費(fèi)標(biāo)準(zhǔn)分別是500元/分鐘和200元分鐘,假設(shè)甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元
A.72B.80C.84D.90
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù))在上有兩個零點(diǎn),則的范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com