已知橢圓的左右焦點(diǎn)分別為,左頂點(diǎn)為,若,橢圓的離心率為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若是橢圓上的任意一點(diǎn),求的取值范圍
(III)直線與橢圓相交于不同的兩點(diǎn)(均不是長(zhǎng)軸的頂點(diǎn)),垂足為H且,求證:直線恒過(guò)定點(diǎn).
(Ⅰ)   (Ⅱ)的取值范圍是[0,12]
(I)由題意得        ………………4分
(II)設(shè)

由橢圓方程得,二次函數(shù)開(kāi)口向上,對(duì)稱軸x=-6<-2
當(dāng)x=-2時(shí),取最小值0,
當(dāng)x= 2時(shí), 取最大值12
的取值范圍是[0,12]        ………………………………9分
(III)
    ※網(wǎng)w。w-w*k&s%5¥u
設(shè) ,則



 均適合※    ………………12分

…………………………13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)在軸上,短軸長(zhǎng)為4,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線過(guò)該橢圓的左焦點(diǎn),交橢圓于M、N兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分) 已知橢圓的離心率為,過(guò)右焦點(diǎn)F的直線相交于兩點(diǎn),當(dāng)的斜率為1時(shí),坐標(biāo)原點(diǎn)的距離為
(I)求,的值;
(II)上是否存在點(diǎn)P,使得當(dāng)繞F轉(zhuǎn)到某一位置時(shí),有成立?
若存在,求出所有的P的坐標(biāo)與的方程;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的離心率為,則的值是
A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),且橢圓的離心率為
(1)求橢圓的方程;
(2)是否存在以為直角頂點(diǎn)且內(nèi)接于橢圓的等腰直角三角形?若存在,求出共有幾個(gè);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F是橢圓的右焦點(diǎn),橢圓上的點(diǎn)與點(diǎn)F的最大距離為M,最小距離為N,則橢圓上與點(diǎn)F的距離等于的點(diǎn)的坐標(biāo)是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為、,點(diǎn)A在雙曲線
第一象限的圖象上,若△的面積為1,且,,則
雙曲線方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)P是曲線上任意一點(diǎn),則點(diǎn)P到直線的最小距離為 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線的方程為,過(guò)左焦點(diǎn)F1作斜率為的直線交雙曲線的右支于點(diǎn)P,且軸平分線段F1P,則雙曲線的離心率是           

查看答案和解析>>

同步練習(xí)冊(cè)答案