選修4—1:幾何證明選講
如圖所示,已知PA是⊙O相切,A為切點,PBC為割線,弦CD//AP,AD、BC相交于 E點,F(xiàn)為CE上一點,且

(1)求證:A、P、D、F四點共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長。
(Ⅰ)通過證明,
根據(jù),得出,證得四點共圓.
( Ⅱ)為所求.

試題分析:(Ⅰ)證明:,

,

,所以四點共圓. 5分
( Ⅱ)解:由(Ⅰ)及相交弦定理得,
,
,
由切割線定理得
所以為所求.                        10分
點評:容易題,作為選考內容,這類題目往往不太難,關鍵是記清常用定理。涉及圓的問題,一般會與三角形相似、全等相結合。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,在中,,平分于點,點上,
(1)求證:是△的外接圓的切線;
(2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖示,是半圓周上的兩個三等分點,直徑,,垂足為,則的長為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,從圓外一點引圓的切線和割線,已知,圓的半徑,則圓心的距離為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在等邊△ABC中,P是邊AC上一點,連接BP,將△BCP繞點B逆時針旋轉60°,得到△BAQ,連接PQ.若BC=8,BP=7,則△APQ的周長是    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,PAB、PCD為⊙O的兩條割線,若PA=5,AB=7,CD=11,AC=2,則BD等于          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如下圖,菱形ABCD的邊長為8cm,∠A=60°,DE⊥AB于點E,DF⊥BC于點F,則四邊形BEDF的面積為____________cm2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1:幾何證明講 如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點E,EF垂直BA的延長線于點F.

求證:(1);
(2)AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
如圖,⊙O內切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G。

(1)求證:圓心O在直線AD上;
(2)求證:點C是線段GD的中點。

查看答案和解析>>

同步練習冊答案