設(shè)
a
=(a1,a2),
b
=(b1,b2)定義向量
a
?
b
=(a1b1,a2b2),已知
m
=(2,
1
2
),
n
=(
π
3
,0),且點P(x,y)在函數(shù)y=sinx的圖象上運動,Q在函數(shù)y=f(x)的圖象上運動,且點P和點Q滿足:
OQ
=
m
?
OP
+
n
(其中O為坐標(biāo)原點),則函數(shù)y=f(x)的最大值A(chǔ)及最小正周期T分別為( 。
A、2,π
B、2,4π
C、
1
2
,π
D、
1
2
,4π
分析:可先設(shè)P(x,sinx),由已知定義可得
OQ
=(2x,
1
2
sinx)+(
π
3
,0)=(2x+
π
3
,sinx)
,從而可求f(x)=
1
2
sin(
1
2
x-
π
6
)

,根據(jù)三角函數(shù)的性質(zhì)可得函數(shù)的最大值為,最小正周期
解答:解:設(shè)P(x,sinx)
OQ
=(2x,
1
2
sinx)+(
π
3
,0)=(2x+
π
3
,sinx)
,
∵Q在函數(shù)y=f(x)的圖象上運動
f(2x+
π
3
)=
1
2
sinx
,∴f(x)=
1
2
sin(
1
2
x-
π
6
)

函數(shù)的最大值為
1
2
,最小正周期為4π
故選D.
點評:本題以新定義為載體,以向量的基本運算為工具,著重考查了三角函數(shù)的最值及周期的求解,屬于中檔試題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

max{S1,S2,…Sn}表示實數(shù)S1,S2,…Sn中的最大者.設(shè)A=(a1,a2,a3),B=
b1
b2
b3
,記A?B=max{a1b1,a2b2,a3b3}.設(shè)A=(x-1,x+1,1),B=
1
x-2
|x-1|
,若A?B=x-1,則實數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量也叫二維向量,二維向量的坐標(biāo)表示及其運算可以推廣到n(n≥3)維向量,n維向量可用(x1,x2,x3,…xn)表示,設(shè)
a
=(a1,a2,a3,…an),規(guī)定向量 
a
b
  夾角θ的余弦cosθ=
aibi
ai2bi2 
a
=(1,1,1,1),
b
=(-1,1,1,1) 時,cosθ=( 。
A、-
1
2
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們學(xué)過平面向量(二維向量)),空間向量(三位向量),二維、三維向量的坐標(biāo)表示及其運算可以推廣到n(n≥3)維向量.n維向量可用 (x1,x2,x3,x4,…,xn)表示.設(shè)
a
=(a1,a2,a3,a4,…,an),設(shè)
b
=(b1,b2,b3,b4,…,bn),a與b夾角θ的余弦值為cosθ=
a1b1+a2b2+…+anbn
a
2
1
+
a
2
2
+…+
a
2
n
b
2
1
+
b
2
2
+…+
b
2
n
.當(dāng)兩個n維向量,
a
=(1,1,1,…,1),
b
=(-1,-1,1,1,…,1)時,cosθ=( 。
A、
n-1
n
B、
n-2
n
C、
n-3
n
D、
n-4
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若max{s1,s2,…,sn}表示實數(shù)s1,s2,…,sn中的最大者.設(shè)A=(a1,a2,a3),B=
b1
b2
b3
,記A?B=max{a1b1,a2b2,a3b3}.設(shè)A=(x-1,x+1,1),B=
1
x-2
|x-1|
,若A?B=x-1,則x的取值范圍為( 。

查看答案和解析>>

同步練習(xí)冊答案