【題目】為了解某地網(wǎng)民瀏覽購(gòu)物網(wǎng)站的情況,從該地隨機(jī)抽取100名網(wǎng)民進(jìn)行調(diào)查,其中男性、女性人數(shù)分別為60和40.下面是根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)的數(shù)據(jù),將日均瀏覽購(gòu)物網(wǎng)站時(shí)間不低于40分鐘的網(wǎng)民稱(chēng)為“網(wǎng)購(gòu)達(dá)人”,已知“網(wǎng)購(gòu)達(dá)人”中女性人數(shù)為15人.
日均瀏覽購(gòu)物網(wǎng)站時(shí)間(分鐘) | ||||||
人數(shù) | 2 | 14 | 24 | 35 | 20 | 5 |
(1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為是否為“網(wǎng)購(gòu)達(dá)人”與性別有關(guān);
非網(wǎng)購(gòu)達(dá)人 | 網(wǎng)購(gòu)達(dá)人 | 總計(jì) | |
男 | |||
女 | 15 | ||
總計(jì) |
(2)從上述調(diào)查中的“網(wǎng)購(gòu)達(dá)人”中按性別分層抽樣,抽取5人發(fā)放禮品,再?gòu)倪@5人中隨機(jī)選出2人作為“最美網(wǎng)購(gòu)達(dá)人”,求這兩個(gè)“最美網(wǎng)購(gòu)達(dá)人”中恰好為1男1女的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見(jiàn)解析,有(2)
【解析】
(1)由頻數(shù)分布表可知,在抽取的100人中“網(wǎng)購(gòu)達(dá)人”有25人,即可補(bǔ)充完整的列聯(lián)表,再計(jì)算與進(jìn)行比較,即可得答案;
(2)根據(jù)分層抽樣得到男、女人數(shù),再利用古典概型進(jìn)行概率計(jì)算,即可得答案;
(1)由頻數(shù)分布表可知,在抽取的100人中“網(wǎng)購(gòu)達(dá)人”有25人.
補(bǔ)充完整的列聯(lián)表如下:
非網(wǎng)購(gòu)達(dá)人 | 網(wǎng)購(gòu)達(dá)人 | 總計(jì) | |
男 | 50 | 10 | 60 |
女 | 25 | 15 | 40 |
合計(jì) | 75 | 25 | 100 |
所以有99%的把握認(rèn)為是否為“網(wǎng)購(gòu)達(dá)人”與性別有關(guān).
(2)由題意可得分層抽樣的概率為,故抽取的5人中,
男性有人,記作a,b,
女性有人,記作,
從這5人中任取2人的可能情況有,共10種,
其中恰為1男1女的有共6種.
故所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,若集合中恰好有3個(gè)元素,求實(shí)數(shù)的取值范圍;
(3)若,且,求證:數(shù)列為等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若,恒成立,求實(shí)數(shù)的最大值;
(2)在(1)的條件下,求證:函數(shù)在區(qū)間內(nèi)存在唯一的極大值點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年全國(guó)數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競(jìng)賽,學(xué)生如果其中2次成績(jī)達(dá)全區(qū)前20名即可進(jìn)入省隊(duì)培訓(xùn),不用參加其余的競(jìng)賽,而每個(gè)學(xué)生最多也只能參加5次競(jìng)賽.規(guī)定:若前4次競(jìng)賽成績(jī)都沒(méi)有達(dá)全區(qū)前20名,則第5次不能參加競(jìng)賽.假設(shè)某學(xué)生每次成績(jī)達(dá)全區(qū)前20名的概率都是,每次競(jìng)賽成績(jī)達(dá)全區(qū)前20名與否互相獨(dú)立.
(1)求該學(xué)生進(jìn)入省隊(duì)的概率.
(2)如果該學(xué)生進(jìn)入省隊(duì)或參加完5次競(jìng)賽就結(jié)束,記該學(xué)生參加競(jìng)賽的次數(shù)為,求的分布列及的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).
(1)試求拋物線的方程;
(2)已知點(diǎn)兩點(diǎn)在拋物線上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.
①求證:直線恒過(guò)定點(diǎn);
②過(guò)點(diǎn)作直線的垂線交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M,N分別是橢圓C:()的左頂點(diǎn)和上頂點(diǎn),F為其右焦點(diǎn),,橢圓的離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線與橢圓C相交于A,B兩點(diǎn),若直線OA,AB,OB的斜率成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖統(tǒng)計(jì)了截止到2019年年底中國(guó)電動(dòng)汽車(chē)充電樁細(xì)分產(chǎn)品占比及保有量情況,關(guān)于這5次統(tǒng)計(jì),下列說(shuō)法正確的是( )
A.私人類(lèi)電動(dòng)汽車(chē)充電樁保有量增長(zhǎng)率最高的年份是2018年
B.公共類(lèi)電動(dòng)汽車(chē)充電樁保有量的中位數(shù)是25.7萬(wàn)臺(tái)
C.公共類(lèi)電動(dòng)汽車(chē)充電樁保有量的平均數(shù)為23.12萬(wàn)臺(tái)
D.從2017年開(kāi)始,我國(guó)私人類(lèi)電動(dòng)汽車(chē)充電樁占比均超過(guò)50%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為平行四邊形,且,.
(1)證明:平面
(2)當(dāng)直線與平面所成角的正切值為時(shí),求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),直線:,點(diǎn)為上一動(dòng)點(diǎn),過(guò)作直線,為的中垂線,與交于點(diǎn),設(shè)點(diǎn)的軌跡為曲線Γ.
(1)求曲線Γ的方程;
(2)若過(guò)的直線與Γ交于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),求與的比值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com