某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
(1)畫出散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a

(參考公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(x-
.
x
)
2
=
n
i=1
xiyi-n•
.
x
.
y
n
i=1
x
2
i
-n•
.
x
2
;a=
.
y
-b
.
x
分析:(1)先做出平面直角坐標(biāo)系,把表格中包含的五對點的坐標(biāo)對應(yīng)的畫到坐標(biāo)系中,做出散點圖.
(2)根據(jù)表中所給的數(shù)據(jù),做出利用最小二乘法所用的四個量,利用最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程.
解答:(本題12分)
解:(1)根據(jù)表中所列數(shù)據(jù)可得散點圖如圖:
(2)列出下表.

i 1 2 3 4 5
xi 2 4 5 6 8
yi 30 40 60 50 70
xiyi 60 160 300 300 560
因此,
.
x
=
25
5
=5,
.
y
=
250
5
=50
,
5
i=1
x
2
i
=145,
5
i=1
y
2
i
=13500,
5
i=1
xiyi=1380

于是可得
b
=
5
i=1
xiyi-5
.
x
.
y
5
i=1
x
2
i
-5
.
x
2
=
1380-5×5×50
145-5×52
=6.5
;  …(8分)
a
=
.
y
-
b
.
x
=50-6.5×5=17.5
,…(10分)
因此,所求回歸方程是 
y
=6.5x+17.5
.…(12分)
點評:本題考查線性回歸方程的求法和應(yīng)用,解題的關(guān)鍵是細(xì)心地做出線性回歸方程要用的系數(shù),基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 50 60 70
(1)畫出散點圖;
(2)求線性回歸方程;
(3)預(yù)測當(dāng)廣告費支出為7百萬元時的銷售額.參考公式:
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
xy
n
i=1
x
2
i
-nx-2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x(百萬元)與銷售額y(百萬元)之間有如下對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 50 60 70
如果y與x之間具有線性相關(guān)關(guān)系.
(1)作出這些數(shù)據(jù)的散點圖;
(2)求這些數(shù)據(jù)的線性回歸方程
?
y
=
?
b
x+
?
a
;
(3)預(yù)測當(dāng)廣告費支出為9百萬元時的銷售額.
參考公式:用最小二乘法求線性回歸方程系數(shù)公式
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
?
a
=
.
y
-
?
b
.
x

參考數(shù)據(jù):
5
i=1
xiyi=1390

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額),之間有如下對應(yīng)數(shù)據(jù)(單位:百萬元):
x 2 4 5 6 8
y 30 40 60 50 70
(Ⅰ)請畫出這個樣本的散點圖;
(Ⅱ)你能從散點圖中發(fā)現(xiàn)什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y之間有如下對應(yīng)數(shù)據(jù):
x∕106 2 4 5 6 8
y∕106 30 40 60 50 70
根據(jù)散點圖分析,x與y具有線性相關(guān)關(guān)系,且線性回歸方程為
y
=6.5x+a
,則a的值為
17.5
17.5

查看答案和解析>>

同步練習(xí)冊答案