已知數(shù)列中,,前和
(Ⅰ)求證:數(shù)列是等差數(shù)列; (Ⅱ)求數(shù)列的通項公式;
(Ⅲ)設(shè)數(shù)列的前項和為,是否存在實(shí)數(shù),使得對一切正整數(shù)都成立?若存在,求的最小值,若不存在,試說明理由.
(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,.
解析試題分析:(Ⅰ)對條件式進(jìn)行變形,得到遞推關(guān)系得證;(Ⅱ)由條件求出首項和公差即得;(Ⅲ)利用裂項相消法求出,再考察的上確界,可得的最小值.
試題解析:(Ⅰ)因為,所以,
所以,
整理,得,所以,
所以,
所以,所以,
所以,數(shù)列為等差數(shù)列。
(Ⅱ),,所以,即為公差,
所以;
(Ⅲ)因為,
所以,
所以對時,,且當(dāng)時,,所以要使對一切正整數(shù)都成立,只要,所以存在實(shí)數(shù)使得對一切正整數(shù)都成立,的最小值為.
考點(diǎn):等差數(shù)列、數(shù)列的求和、不等式、裂項相消法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的各項均為正數(shù),其前n項的和為,對于任意正整數(shù)m,n, 恒成立.
(Ⅰ)若=1,求及數(shù)列的通項公式;
(Ⅱ)若,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為公差不為的等差數(shù)列,為前項和,和的等差中項為,且.令數(shù)列的前項和為.
(1)求及;
(2)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)證明對每一個,存在唯一的,滿足;
(Ⅱ)由(Ⅰ)中的構(gòu)成數(shù)列,判斷數(shù)列的單調(diào)性并證明;
(Ⅲ)對任意,滿足(Ⅰ),試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
公差不為零的等差數(shù)列{}中,,又成等比數(shù)列.
(I) 求數(shù)列{}的通項公式.
(II)設(shè),求數(shù)列{}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項和為,對任意滿足,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩人用農(nóng)藥治蟲,由于計算錯誤,在A、B兩個噴霧器中分別配制
成12%和6%的藥水各10千克,實(shí)際要求兩個噴霧器中的農(nóng)藥的濃度是一樣的,現(xiàn)在只有兩個容量為1千
克的藥瓶,他們從A、B兩個噴霧器中分別取1千克的藥水,將A中取得的倒入B中,B中取得的倒入A
中,這樣操作進(jìn)行了n次后,A噴霧器中藥水的濃度為,B噴霧器中藥水的濃度為.
(1)證明:是一個常數(shù);
(2)求與的關(guān)系式;
(3)求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)在等差數(shù)列{an}中,a1+a3=8,且a4為a2和a9的等比中項,求數(shù)列{an}的首項,公差及前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com