設直線l的方程為,根據下列條件分別確定實數(shù)m的值.

(1)l在x軸上的截距是-3;

(2)斜率是-1.

答案:略
解析:

解 (1)由題意得,∴

(2)若斜率為-1,則,∴m=-2.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:X-y+1=0,⊙O:x2+y2=2上的任意一點P到直線l的距離為d.當d取得最大時對應P的坐標(m,n),設g(x)=mx+
n
x
-2lnx.
(1)求證:當x≥1,g(x)≥0恒成立;
(2)討論關于x的方程:mx+
n
x
-g(x)=2x3-4ex2+tx
根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•黃岡模擬)若關于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內,另一根在區(qū)間(1,3)內,記點(a,b)對應的區(qū)域為S.
(1)設z=2a-b,求z的取值范圍;
(2)過點(-5,1)的一束光線,射到x軸被反射后經過區(qū)域S,求反射光線所在直線l經過區(qū)域S內的整點(即橫縱坐標為整數(shù)的點)時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省大慶實驗中學高二(下)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知直線l:X-y+1=0,⊙O:x2+y2=2上的任意一點P到直線l的距離為d.當d取得最大時對應P的坐標(m,n),設g(x)=mx+-2lnx.
(1)求證:當x≥1,g(x)≥0恒成立;
(2)討論關于x的方程:根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省南京九中高三(上)期中數(shù)學練習試卷(文科)(解析版) 題型:解答題

已知直線l:X-y+1=0,⊙O:x2+y2=2上的任意一點P到直線l的距離為d.當d取得最大時對應P的坐標(m,n),設g(x)=mx+-2lnx.
(1)求證:當x≥1,g(x)≥0恒成立;
(2)討論關于x的方程:根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省高考數(shù)學壓軸卷(理科)(解析版) 題型:解答題

若關于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內,另一根在區(qū)間(1,3)內,記點(a,b)對應的區(qū)域為S.
(1)設z=2a-b,求z的取值范圍;
(2)過點(-5,1)的一束光線,射到x軸被反射后經過區(qū)域S,求反射光線所在直線l經過區(qū)域S內的整點(即橫縱坐標為整數(shù)的點)時直線l的方程.

查看答案和解析>>

同步練習冊答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷