【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):
學(xué)生編號 題號 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測的答對人數(shù)及相應(yīng)的實(shí)測難度填入下表,并估計這120名學(xué)生中第5題的實(shí)測答對人數(shù);
題號 | 1 | 2 | 3 | 4 | 5 |
實(shí)測答對人數(shù) | |||||
實(shí)測難度 |
(Ⅱ)從編號為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對第5題的概率;
(Ⅲ)定義統(tǒng)計量,其中為第題的實(shí)測難度, 為第題的預(yù)估難度.規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)根據(jù)表中數(shù)據(jù),估計120人中有人答對第5題.
(Ⅱ)根據(jù)古典概型計算得到;
(Ⅲ)根據(jù)方差計算公式求解即可.
試題解析:
(Ⅰ)每道題實(shí)測的答對人數(shù)及相應(yīng)的實(shí)測難度如下表:
題號 | 1 | 2 | 3 | 4 | 5 |
實(shí)測答對人數(shù) | 8 | 8 | 7 | 7 | 2 |
實(shí)測難度 | 0.8 | 0.8 | 0.7 | 0.7 | 0.2 |
所以,估計120人中有人答對第5題.
(Ⅱ)記編號為的學(xué)生為,從這5人中隨機(jī)抽取2人,不同的抽取方法有10種.
其中恰好有1人答對第5題的抽取方法為, , , , , ,共6種.
所以,從抽樣的10名學(xué)生中隨機(jī)抽取2名答對至少4道題的學(xué)生,恰好有1人答對第5題的概率為.
(Ⅲ)為抽樣的10名學(xué)生中第題的實(shí)測難度,用作為這120名學(xué)生第題的實(shí)測難度. .
因?yàn)?,所以,該次測試的難度預(yù)估是合理的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點(diǎn),直線與交與, ,求, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)是否存在實(shí)數(shù)使函數(shù)是奇函數(shù)?并說明理由;
(2)在(1)的條件下,當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海州市六一兒童節(jié)期間在婦女兒童活動中心舉行小學(xué)生“海州杯”圍棋比賽,規(guī)則如下:甲、乙兩名選手比賽時,每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對方多2分或賽滿6局時比賽結(jié)束.設(shè)某校選手甲與另一選手乙比賽時,甲每局獲勝的概率皆為,且各局比賽勝負(fù)互不影響,已知第二局比賽結(jié)束時比賽停止的概率為.
(1)求的值;
(2)設(shè)表示比賽停止時已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀(jì)念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進(jìn)行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星,每人獲得一個紀(jì)念品,其數(shù)據(jù)表格如下:
(Ⅰ)求此活動中各公園幸運(yùn)之星的人數(shù);
(Ⅱ)從乙和丙公園的幸運(yùn)之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺記者對乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計結(jié)果如下(單位:人):
據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為有興趣研究“紅軍長征”歷史與性別有關(guān).
附臨界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè)為曲線在點(diǎn)處的切線,其中.
(Ⅰ)求直線的方程(用表示);
(Ⅱ)求直線在軸上的截距的取值范圍;
(Ⅲ)設(shè)直線分別與曲線和射線()交于, 兩點(diǎn),求的最小值及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,以上頂點(diǎn)和右焦點(diǎn)為直徑端點(diǎn)的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)對于直線和點(diǎn),橢圓上是否存在不同的兩點(diǎn)與關(guān)于直線對稱,且,若存在實(shí)數(shù)的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中且,若, 在處切線的斜率為.
(1)求函數(shù)的解析式及其單調(diào)區(qū)間;
(2)若實(shí)數(shù)滿足,且對于任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從、、、四首不同曲目中任選一首.
(1)求甲、乙兩班選擇不同曲目的概率;
(2)設(shè)這四個班級總共選取了首曲目,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com