(Ⅰ)設(shè)a1,a2,a3均為正數(shù),且a1+a2+a3=m,求證;
(Ⅱ)已知a,b都是正數(shù),x,y∈R,且a+b=1,求證:ax2+by2≥(ax+by)2。
證明:(Ⅰ)
,
當且僅當時,等號成立;
(Ⅱ)ax2+by2=(ax2+by2)(a+b)=a2x2+b2y2+ab(x2+y2)≥a2x2+b2y2+2abxy=(ax+by)2。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、設(shè)a1,a2,…,an是1,2,…,n的一個排列,把排在ai的左邊且比ai小的數(shù)的個數(shù)稱為ai的順序數(shù)(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0.則在由1、2、3、4、5、6、7、8這八個數(shù)字構(gòu)成的全排列中,同時滿足8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,…,an為正數(shù),求證:
a
2
1
a2
+
a
2
2
a3
+…+
a
2
n-1
an
+
a
2
n
a1
≥a1+a2+…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,a3,a4,a5為自然數(shù),A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},且a1<a2<a3<a4<a5,并滿足A∩B={a1,a4},a1+a4=10,A∪B中的所有元素之和為256,則集合A為
{1,2,3,9,12}或{1,3,5,9,11}
{1,2,3,9,12}或{1,3,5,9,11}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,…,an是1,2,…,n的一個排列,把排在ai的左邊且比ai小的數(shù)的個數(shù)稱為ai的順序數(shù)(i=1,2,,…,n).如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0.則在由1、2、3、4、5、6、7、8這八個數(shù)字構(gòu)成的全排列中,同時滿足8的順序數(shù)為2,7的順序數(shù)為4,4的順序數(shù)為2,且1、2必須相鄰的不同排列的種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B是橢圓E:
x2
a2
+
y2
b2
=1(a
>b>0)上的一點,F(xiàn)是橢圓右焦點,且BF⊥x軸,B(1,
3
2
)

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A1和A2是長軸的兩個端點,直線l垂直于A1A2的延長線于點D,|OD|=4,P是l上異于點D的任意一點,直線A1P交橢圓E于M(不同于A1,A2),設(shè)λ=
A2M
A2P
,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案