【題目】已知曲線上的點到點的距離比它到直線的距離小2.

(1)求曲線的方程;

(2)過點且斜率為的直線交曲線, 兩點,若,當時,求的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)由題意得曲線是以為焦點,以為準線的拋物線,進而可得其方程為;(2)設直線,代入拋物線方程消去可得,設, ,則,由,得,又,可構造,由函數(shù)的單調性可得,即,解得,即為所求。

試題解析:(1)由題意得動點的距離等于它到直線的距離,

∴ 動點的軌跡是以為焦點,以為準線的拋物線,

設其方程為,由條件得.

∴ 曲線的標準方程為;

(2)由題意設直線的方程為

消去y整理得,

∵ 直線與拋物線相交,∴,

設A(x1,y1),B(x2,y2),則

,即

,∴,

可得

,

,∴。

,則函數(shù)上單調遞減。

,即。

,滿足。

的取值范圍為。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中, 的中心, 分別是線段上的動點,且,

(Ⅰ)若直線平面,求實數(shù)的值;

(Ⅱ)若,正方體的棱長為2,求平面和平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知中心在原點,離心率為的橢圓的一個焦點為圓的圓心.

(Ⅰ)求橢圓的方程;

(Ⅱ)設是橢圓上一點,過作兩條斜率之積為的直線, ,當直線, 都與圓相切時,求的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設|θ|< ,n為正整數(shù),數(shù)列{an}的通項公式an=sin tannθ,其前n項和為Sn
(1)求證:當n為偶函數(shù)時,an=0;當n為奇函數(shù)時,an=(﹣1) tannθ;
(2)求證:對任何正整數(shù)n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,底面為正三角形, 底面, 的中點.

(1)求證: 平面;

(2)求證:平面平面;

3)在側棱上是否存在一點,使得三棱錐的體積是若存在,求出的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為 1, 的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).

①當時, 為四邊形;②當時, 為等腰梯形;③當時, 為六邊形;④當時, 的面積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二年級進行了百科知識大賽,為了了解高二年級900名同學的比賽情況,現(xiàn)在甲、乙兩個班級各隨機抽取了10名同學的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學生的成績(單位:分)數(shù)據(jù)的莖葉圖如圖1所示:

(1)比較兩組數(shù)據(jù)的分散程度(只需要給出結論),并求出甲組數(shù)據(jù)的頻率分布直方圖如圖2中所示的值;

(2)現(xiàn)從兩組數(shù)據(jù)中獲獎的學生里分別隨機抽取一人接受采訪,求被抽中的甲班學生成績高于乙班學生成績的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學(男30女20),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)

)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關?

)經過多次測試后,甲每次解答一道幾何題所用的時間在57分鐘,乙每次解答一道幾何題所用的時間在68分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側棱底面,且側棱的長是,點分別是的中點.

(Ⅰ)證明: 平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案