設(shè)不等式的解集為A,且
(Ⅰ)求的值
(Ⅱ)求函數(shù)的最小值
(Ⅰ)(Ⅱ)的最小值為
(Ⅰ)因為,且,所以,且
解得,又因為,所以
(Ⅱ)因為
當(dāng)且僅當(dāng),即時取得等號,所以的最小值為
不等式選講如果如此題只考查絕對值不等式就算比較容易的題目,注意絕對值的三角不等式即可,當(dāng)然也可通過討論去掉絕對值號,當(dāng)然還要注意均值和柯西不等式的應(yīng)用。
【考點定位】本題考查絕對值不等式的基本內(nèi)容,屬于簡單題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中值域是(0,+∞)的函數(shù)是( 。
A.y=5
1
2-x
B.y=(
1
2
1-x
C.y=
1-2x
D.y=
1
2x
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在上的偶函數(shù),滿足,都有,且當(dāng)時,.若函數(shù)上有三個零點,則的取值范圍是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的圖象過原點,且在原點處的切線斜率是,則不等式組所確定的平面區(qū)域在內(nèi)的面積為  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè) 
(1)當(dāng),求的取值范圍;
(2)若對任意,恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x(1-x),x∈(0,1)的最大值為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)奇函數(shù)的定義域為R,最小正周期,若,則的取值范圍是
A. B.
C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況。在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù)。當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時。研究表明當(dāng)時,車流速度是車流密度的一次函數(shù)。
當(dāng)時,求函數(shù)的表達(dá)式;
當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達(dá)到最大?并求出最大值。(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f滿足f(ab)=f(a)+ f(b),且f(2)=那么等于(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案