2.已知a∈R,函數(shù)f(x)=$\frac{1}{2}{x^2}$+alnx-3x,g(x)=-x2+8x,且x=1是函數(shù)f(x)的極大值點(diǎn).
(1)求a的值.
(2)如果函數(shù)y=f(x)和函數(shù)y=g(x)在區(qū)間(b,b+1)上均為增函數(shù),求實(shí)數(shù)b的取值范圍.

分析 (1)因?yàn)楹瘮?shù)$f(x)=\frac{1}{2}{x^2}+alnx-3x$(x>0),求出導(dǎo)函數(shù),利用x=1是函數(shù)f(x)的極大值點(diǎn).求出a.然后驗(yàn)證即可.
(2)求出函數(shù)g(x)的單調(diào)遞增區(qū)間.又由(1)可知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),(2,+∞),列出不等式組,求解b 的范圍即可.

解答 解:(1)因?yàn)楹瘮?shù)$f(x)=\frac{1}{2}{x^2}+alnx-3x$(x>0)
所以f′(x)=x+$\frac{a}{x}$-3,(x>0)----------------------(2分),
又因?yàn)閤=1是函數(shù)f(x)的極大值點(diǎn).
所以${f^′}(1)=\frac{{{1^2}-3×1+a}}{1}=0$,解得a=2---------------------(4分)
檢驗(yàn):當(dāng)a=2時(shí),${f^′}(x)=\frac{{{x^2}-3x+2}}{x}=\frac{{({x-1})({x-2})}}{x}$(x>0)
當(dāng)x∈(0,1),(2,+∞)時(shí),f′(x)>0,當(dāng)x∈(1,2)時(shí),f′(x)<0,
所以x=1是函數(shù)f(x)的極大值點(diǎn),a=2符合題意.----------------------(6分)
(2)g(x)=-x2+8x=-(x-4)2+16
所以函數(shù)g(x)的單調(diào)遞增區(qū)間是(4,+∞)----------------------(8分)
又由(1)可知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),(2,+∞)
所以依題意得$\left\{{\begin{array}{l}{b≥0}\\{b+1≤1}\\{b+1≤4}\end{array}}\right.$或$\left\{{\begin{array}{l}{b≥2}\\{b+1≤4}\end{array}}\right.$----------------------(10分)
解得 b=0或  2≤b≤3
所以實(shí)數(shù)b的取值范圍是{0}∪[2,3]----------------------(12分)

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值以及單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)點(diǎn)A為曲線(xiàn)C:ρ=2cosθ在極軸Ox上方的一點(diǎn),且0≤∠AOx≤$\frac{π}{4}$,以A為直角頂點(diǎn),AO為一條直角邊作等腰直角三角形OAB(B在A的右下方),求點(diǎn)B的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量y(單位:千克)與銷(xiāo)售價(jià)格x(單位:元/千克)滿(mǎn)足關(guān)系式y(tǒng)=$\frac{a}{x-4}$+10(x-7)2.其中3<x<7,a為常數(shù).已知銷(xiāo)售價(jià)格為6元/千克時(shí),每日可售出該商品11千克.
(Ⅰ)求a的值;
(Ⅱ)若該商品的成本為4元/千克,試確定銷(xiāo)售價(jià)格x(單位:元/千克)的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)n∈N*,f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,計(jì)算得f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,觀察上述結(jié)果,可推測(cè)一般結(jié)論為(  )
A.f(n)≥$\frac{lo{g}_{2}n+2}{2}$(n∈N*B.f(2n)≥$\frac{n+2}{2}$(n∈N*
C.f(2n)≥$\frac{lo{g}_{2}n+2}{2}$(n∈N*D.f(2n)≥$\frac{n+2}{2}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.電動(dòng)自行車(chē)的耗電量y與速度x的關(guān)系為y=$\frac{1}{3}{x^3}-\frac{39}{2}{x^2}$-40x(x>0),為使耗電量最小,則速度應(yīng)為( 。
A.45B.40C.35D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)m個(gè)正數(shù)a1,a2,…,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1,a2,a3,…ak-1,ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1,am,am-1,…,ak+1,ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1,a2,…,am的所有項(xiàng)的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿(mǎn)足a1+a2+…+ak-1+ak=3(ak+1+ak+2+…+am-1+am)?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若f(x)是定義在R上的可導(dǎo)函數(shù),且ef'(x)的圖象如圖所示,則y=f(x)的遞減區(qū)間是( 。
A.(-∞,0)B.(2,+∞)C.(0,1)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一列火車(chē)在平直的鐵軌上行駛,由于遇到緊急情況,火車(chē)以速度v(t)=6-t+$\frac{44}{1+t}$(t的單位:s,v的單位:m/s)緊急剎車(chē)至停止.則緊急剎車(chē)后火車(chē)運(yùn)行的路程是10+44ln11(m)(不作近似計(jì)算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某幾何體三視圖如圖所示,則這個(gè)幾何體的體積為$\frac{4\sqrt{3}}{3}$,外接球的體積為$\frac{28\sqrt{21}}{27}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案