分析:①不等式|
|≥1?(x+1)
2≥(x-1)
2≠0,解得即可;
②由數(shù)列{x
n}滿足lgx
n+1=1+lgx
n,可得
lgxn+1-lgxn=lg=1,于是
=10,可得數(shù)列{x
n}是等比數(shù)列,利用等比數(shù)列的性質(zhì)即可得出.
解答:解:①不等式|
|≥1?(x+1)
2≥(x-1)
2≠0,解得x>0且x≠1,
因此原不等式的解集是(0,1)∪(1,+∞);
②∵數(shù)列{x
n}滿足lgx
n+1=1+lgx
n,
∴
lgxn+1-lgxn=lg=1,∴
=10,
∴數(shù)列{x
n}是以x
1為首項(xiàng),10為公比的等比數(shù)列,
∴x
101+x
102+…+x
200=10
100(x
1+x
2+…+x
100)=10
100×100=10
102.
∴l(xiāng)g(x
101+x
102+…+x
200)=lg10
102=102.
故答案分別為(0,1)∪(1,+∞),102.
點(diǎn)評(píng):熟練掌握含絕對(duì)值不等式的解法、對(duì)數(shù)的運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)是解題的關(guān)鍵.