【題目】如圖是用模擬方法估計(jì)圓周率π的程序框圖,P表示估計(jì)結(jié)果,則圖中空白框內(nèi)應(yīng)填入( )
A.
B.
C.
D.
【答案】D
【解析】解:法一:由題意以及程序框圖可知,用模擬方法估計(jì)圓周率π的程序框圖,M是圓周內(nèi)的點(diǎn)的次數(shù),當(dāng)i大于1000時(shí),
圓周內(nèi)的點(diǎn)的次數(shù)為4M,總試驗(yàn)次數(shù)為1000,
所以要求的概率 ,
所以空白框內(nèi)應(yīng)填入的表達(dá)式是 .
故選D.
法二:隨機(jī)輸入xi∈(0,1),yi∈(0,1)
那么點(diǎn)P(xi,yi)構(gòu)成的區(qū)域?yàn)橐?/span>
O(0,0),A(1,0),B(1,1),C(0,1)為頂點(diǎn)的正方形.
判斷框內(nèi)x2i+y2i≤1,
若是,說(shuō)說(shuō)明點(diǎn)P(xi , yi)在單位圓內(nèi)部( 圓)內(nèi),并累計(jì)記錄點(diǎn)的個(gè)數(shù)M
若否,則說(shuō)明點(diǎn)P(xi , yi)在單位圓內(nèi)部( 圓)外,并累計(jì)記錄點(diǎn)的個(gè)數(shù)N
第2個(gè)判斷框 i>1000,是進(jìn)入計(jì)算
此時(shí)落在 單位圓內(nèi)的點(diǎn)的個(gè)數(shù)為M,一共判斷了1000個(gè)點(diǎn)
那么 圓的面積/正方形的面積= ,
即 π12÷1=
∴π= (π的估計(jì)值)
即執(zhí)行框內(nèi)計(jì)算的是 .
故選D.
由題意以及框圖的作用,直接推斷空白框內(nèi)應(yīng)填入的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“我將來(lái)要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬(wàn)的小孩子,附近沒(méi)有一個(gè)大人,我是說(shuō)……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無(wú)垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對(duì)的角為,中邊所對(duì)的角為,經(jīng)測(cè)量已知,.
(1)霍爾頓發(fā)現(xiàn)無(wú)論多長(zhǎng),為一個(gè)定值,請(qǐng)你驗(yàn)證霍爾頓的結(jié)論,并求出這個(gè)定值;
(2)霍爾頓發(fā)現(xiàn)麥田的生長(zhǎng)于土地面積的平方呈正相關(guān),記與的面積分別為和,為了更好地規(guī)劃麥田,請(qǐng)你幫助霍爾頓求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷(xiāo)售均價(jià)走勢(shì)如圖所示,3月至7月房?jī)r(jià)上漲過(guò)快,政府從8月采取宏觀調(diào)控措施,10月份開(kāi)始房?jī)r(jià)得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(jià)(萬(wàn)元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求關(guān)于的回歸直線方程;
(2)若政府不調(diào)控,按照3月份至7月份房?jī)r(jià)的變化趨勢(shì)預(yù)測(cè)12月份該市新建住宅的銷(xiāo)售均價(jià).
參考數(shù)據(jù):,,;
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】食品安全一直是人們關(guān)心和重視的問(wèn)題,學(xué)校的食品安全更是社會(huì)關(guān)注的焦點(diǎn).某中學(xué)為了加強(qiáng)食品安全教育,隨機(jī)詢(xún)問(wèn)了36名不同性別的中學(xué)生在購(gòu)買(mǎi)食品時(shí)是否看保質(zhì)期,得到如下“性別”與“是否看保質(zhì)期”的列聯(lián)表:
男 | 女 | 總計(jì) | |
看保質(zhì)期 | 8 | 22 | |
不看保持期 | 4 | 14 | |
總計(jì) |
(1)請(qǐng)將列聯(lián)表填寫(xiě)完整,并根據(jù)所填的列聯(lián)表判斷,能否有的把握認(rèn)為“性別”與“是否看保質(zhì)期”有關(guān)?
(2)從被詢(xún)問(wèn)的14名不看保質(zhì)期的中學(xué)生中,隨機(jī)抽取3名,求抽到女生人數(shù)的分布列和數(shù)學(xué)期望.
附:,().
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”是由騰訊開(kāi)發(fā)的一個(gè)類(lèi)似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).用戶(hù)可以通過(guò)關(guān)注“微信運(yùn)動(dòng)”公眾號(hào)查看自己及好友每日行走的步數(shù)、排行榜,也可以與其他用戶(hù)進(jìn)行運(yùn)動(dòng)量的或點(diǎn)贊.現(xiàn)從某用戶(hù)的“微信運(yùn)動(dòng)”朋友圈中隨機(jī)選取40人,記錄他們某一天的行走步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)/步 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | 10000以上 |
男性人數(shù)/人 | 1 | 6 | 9 | 5 | 4 |
女性人數(shù)/人 | 0 | 3 | 6 | 4 | 2 |
規(guī)定:用戶(hù)一天行走的步數(shù)超過(guò)8000步時(shí)為“運(yùn)動(dòng)型”,否則為“懈怠型”.
(1)將這40人中“運(yùn)動(dòng)型”用戶(hù)的頻率看作隨機(jī)抽取1人為“運(yùn)動(dòng)型”用戶(hù)的概率.從該用戶(hù)的“微信運(yùn)動(dòng)”朋友圈中隨機(jī)抽取4人,記為“運(yùn)動(dòng)型”用戶(hù)的人數(shù),求和的數(shù)學(xué)期望;
(2)現(xiàn)從這40人中選定8人(男性5人,女性3人),其中男性中“運(yùn)動(dòng)型”有3人,“懈怠型”有2人,女性中“運(yùn)動(dòng)型”有2人,“懈怠型”有1人.從這8人中任意選取男性3人、女性2人,記選到“運(yùn)動(dòng)型”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校選派甲、乙、丙、丁、戊5名學(xué)生代表學(xué)校參加市級(jí)“演講”和“詩(shī)詞”比賽,下面是他們的一段對(duì)話.甲說(shuō):“乙參加‘演講’比賽”;乙說(shuō):“丙參加‘詩(shī)詞’比賽”;丙說(shuō)“丁參加‘演講’比賽”;丁說(shuō):“戊參加‘詩(shī)詞’比賽”;戊說(shuō):“丁參加‘詩(shī)詞’比賽”.
已知這5個(gè)人中有2人參加“演講”比賽,有3人參加“詩(shī)詞”比賽,其中有2人說(shuō)的不正確,且參加“演講”的2人中只有1人說(shuō)的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學(xué)生是
A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的圖象與y=g(x)圖象有且僅有兩個(gè)不同的公共點(diǎn)A(x1 , y1),B(x2 , y2),則下列判斷正確的是( )
A.當(dāng)a<0時(shí),x1+x2<0,y1+y2>0
B.當(dāng)a<0時(shí),x1+x2>0,y1+y2<0
C.當(dāng)a>0時(shí),x1+x2<0,y1+y2<0
D.當(dāng)a>0時(shí),x1+x2>0,y1+y2>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com