如圖,橢圓E:=1(a>b>0)的左焦點為F1,右焦點為F2,離心率e=.過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相較于點Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標(biāo);若不存在,說明理由.
科目:高中數(shù)學(xué) 來源:南通高考密卷·數(shù)學(xué)(理) 題型:044
如圖,橢圓方程為=1(a>b>0),A,P,F(xiàn)分別為左頂點,上頂點,右焦點,E為x軸正方向上的一點,且||,||,||成等比數(shù)列.又點N滿足=(),PF的延長線與橢圓的交點為Q,過Q與x軸平行的直線與PN的延長線交于M,
(1)求證:;
(2)若=2,且||=,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年浙江卷文)(14分)
如圖,橢圓=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,
且橢圓的離心率e=.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F、F分別為橢圓的左、右焦點,求證: 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二上學(xué)期期末測試數(shù)學(xué)試卷 題型:解答題
(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長軸AB長為4,離心率e=,O為坐標(biāo)原點,過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ,連結(jié)AQ延長交直線于點M,N為的中點.
(1)求橢圓的方程;
(2)證明:Q點在以為直徑的圓上;
(3)試判斷直線QN與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓E:=1(a>b>0)的長軸長是短軸長的2倍,且過點C(2,1),點C關(guān)于原點O的對稱點為D.
(1)求橢圓E的方程;
(2)點P在橢圓E上,直線CP和DP的斜率都存在且不為0,試問直線CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請說明理由;
(3)平行于CD的直線l交橢圓E于M、N兩點,求△CMN面積的最大值,并求此時直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com