已知等差數(shù)列的首項(xiàng),公差,且、、分別是等比數(shù)列的、、.
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意正整數(shù)均有成立,求的值.
(1),;(2).
解析試題分析:(1)將、、利用與表示,結(jié)合條件、、成等比數(shù)列列式求出的值,再根據(jù)等差數(shù)列的通項(xiàng)公式求出數(shù)列的通項(xiàng)公式,根據(jù)條件、求出等比數(shù)列的通項(xiàng)公式;(2)先令求出的值,然后再令,由得到
,并將兩式相減,從而求出數(shù)列的通項(xiàng)公式,然后根據(jù)數(shù)列通項(xiàng)公式的結(jié)構(gòu)選擇錯(cuò)位相減法求數(shù)列的前項(xiàng)和.
試題解析:(1),,,且、、成等比數(shù)列,
,即,
又,,,,;
(2),①
,即,
又,②
①②得,
,,
則
.
考點(diǎn):1.等差數(shù)列與等比數(shù)列的通項(xiàng)公式;2.定義法求通項(xiàng);3.錯(cuò)位相減法求和
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差,數(shù)列是等比數(shù)列,且.
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意正整數(shù)n,均有成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知公比不為的等比數(shù)列的首項(xiàng),前項(xiàng)和為,且成等差數(shù)列.
(1)求等比數(shù)列的通項(xiàng)公式;
(2)對(duì),在與之間插入個(gè)數(shù),使這個(gè)數(shù)成等差數(shù)列,記插入的這個(gè)數(shù)的和為,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S7=49,a4和a8的等差中項(xiàng)為2.
(1)求an及Sn;
(2)證明:當(dāng)n≥2時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足().
(1)求的值;
(2)求(用含的式子表示);
(3)記,數(shù)列的前項(xiàng)和為,求(用含的式子表示).).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是公差不為零的等差數(shù)列,,且是和的等比中項(xiàng),求:
(1)數(shù)列的通項(xiàng)公式;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列是等差數(shù)列,且且成等比數(shù)列。
(1).求數(shù)列的通項(xiàng)公式
(2).設(shè),求前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
從中這個(gè)數(shù)中取(,)個(gè)數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個(gè)數(shù)記為.
(1)當(dāng)時(shí),寫(xiě)出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意的,都有為常數(shù),且.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比,數(shù)列滿足,,求數(shù)列的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com