【題目】為了讓幼兒園大班的小朋友嘗試以客體區(qū)分左手和右手,左肩和右肩,在游戲中提高細致戲察和辨別能力,同時能大膽地表達自己的想法,體驗與同伴游戲的快樂,某位教師設(shè)計了一個名為(肩手左右)的游戲,方案如下:
游戲準(zhǔn)備:
選取甲、乙兩位小朋友面朝同一方向并排坐下進行游戲.教師站在兩位小朋友面前出示游戲卡片.游戲卡片為兩張白色紙板,一張紙板正反兩面都打印有相同的”左“字,另一張紙板正反兩面打印有相同的“右”字.
游戲進行:
一輪游戲(一輪游戲包含多次游戲直至決出勝者)開始后,教師站在參加游戲的甲、乙兩位小朋友面前出示游戲卡片并大聲報出出示的卡片上的“左”或者“右”字.兩位小朋友如果聽到“左”的指令,或者看到教師出示寫有“左”字的卡片就應(yīng)當(dāng)將左手放至右肩上并大聲喊出“停!”.小朋友如果聽到“右”的指令,或者看到教師出示寫有“右”字的卡片就應(yīng)當(dāng)將右手放至左肩上并大聲喊出“停!”.最先完成指令動作的小朋友喊出“停!”時,兩位小朋友都應(yīng)當(dāng)停止動作,教師根據(jù)兩位小朋友的動作完成情況進行評分,至此游戲完成一次.
游戲評價:
為了方便描述問題,約定:對于每次游戲,若甲小朋友正確完成了指令動作且乙小朋友未完成則甲得1分,乙得﹣1分;若乙小朋友正確完成了指令動作且甲小朋友未完成則甲得﹣1分,乙得1分;若甲,乙兩位小朋友都正確完成或都未正確完成指令動作,則兩位小朋友均得0分.當(dāng)兩位小朋友中的一位比另外一位小朋友的分數(shù)多8分時,就停止本輪游戲,并判定得分高的小朋友獲勝.現(xiàn)假設(shè)“甲小朋友能正確完成一次游戲中的指令動作的概率為α,乙小朋友能正確完成一次游戲中的指令動作的概率為β”,一次游戲中甲小朋友的得分記為X.
(1)求X的分布列;
(2)若甲小朋友、乙小朋友在一輪游戲開始時都賦予4分,pi(i=0,1,…,8)表示“甲小朋友的當(dāng)前累計得分為i時,本輪游戲甲小朋友最終獲勝”的概率,則P0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假設(shè)α=0.5,β=0.8.
①證明:{pi+1﹣pi}(i=0,1,2,…,7)為等比數(shù)列;
②求p4,并根據(jù)p4的值說明這種游戲方案是否能夠充分驗證“甲小朋友能正確完成一次游戲中的指令動作的概率為0.5,乙小朋友能正確完成一次游戲中的指令動作的率為0.8”的假設(shè).
【答案】(1)分布列見解析(2)①證明見解析,②p4=,不能夠
【解析】
(1)先求出的所有可能取值,再用表示出取各個值時的概率,即可得X的分布列.
(2)①由(1)得的值,再利用等比數(shù)列的定義,證明數(shù)列{pi+1﹣pi}(i=0,1,2,…,7)為等比數(shù)列;②利用①的結(jié)論,將用表示,再根據(jù),可求出,從而得的值,即可驗證假設(shè).
(1)的所有可能取值為,
,
,
,
所以X的分布列為:
|
|
|
|
|
|
|
|
(2)① 由(1)得,,
因此,故,
即,
又因為,
所以{pi+1﹣pi}(i=0,1,2,…,7)為公比為,首項為等比數(shù)列.
② 由①可得
,
由于,故,
所以
,
表示最終甲獲勝的概率,由計算結(jié)果可以看出,“甲小朋友能正確完成一次游戲中的指令動作的概率為0.5,乙小朋友能正確完成一次游戲中的指令動作的率為0.8”,甲能獲勝的概率為,此時得出錯誤的結(jié)論的概率非常小,故能充分驗證這個方案的假設(shè).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),其中,,為實常數(shù)
(1)若時,討論函數(shù)的單調(diào)性;
(2)若時,不等式在上恒成立,求實數(shù)的取值范圍;
(3)若,當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型工廠有6臺大型機器,在1個月中,1臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進行維修,每臺機器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺機器的能力(若有2臺機器同時出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺維修,對工廠的正常運行沒有任何影響),每臺機器不出現(xiàn)故障或出現(xiàn)故障時能及時得到維修,就能使該廠獲得10萬元的利潤,否則將虧損2萬元.該工廠每月需支付給每名維修工人1萬元的工資.
(1)若每臺機器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時,有工人進行維修(例如:3臺大型機器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運行.若該廠只有1名維修工人,求工廠每月能正常運行的概率;
(2)已知該廠現(xiàn)有2名維修工人.
(ⅰ)記該廠每月獲利為萬元,求的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘1名維修工人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖(1)梯形中,,過作于,,沿翻折后得圖(2),使得,又點滿足,連接,且.
(1)證明:平面;
(2)求三棱錐外接球的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線方程為.
(1)若函數(shù)存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;
(2)設(shè),對于,的值域為,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過的直線與拋物線交于,兩點,以,兩點為切點分別作拋物線的切線,,設(shè)與交于點.
(1)求;
(2)過,的直線交拋物線于,兩點,證明:,并求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD= .
(1)求證:PN∥AB;
(2)求NC與平面BDN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種水果的經(jīng)驗表明,該水果每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價格為6元/千克時,每日可售出該水果52千克.
(1)求的值;
(2)若該水果的成本為5元/千克,試確定銷售價格的值,使商場每日銷售該水果所獲得的利潤最大,并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com