【題目】兩城相距,在兩地之間距地建一核電站給兩城供電.為保證城市安全,核電站距城市距離不得少于.已知供電費用(元)與供電距離()的平方和供電量(億度)之積成正比,比例系數(shù),若城供電量為億度/月,城為億度/.

)把月供電總費用表示成的函數(shù),并求定義域;

)核電站建在距城多遠,才能使供電費用最小,最小費用是多少?

【答案】,定義域為;()核電站建在距時,才能使供電費用最小,最小費用為.

【解析】

試題()利用供電費用=電價×電量可建立函數(shù),同時根據(jù)題設(shè)要求寫出其定義域;()根據(jù)﹙Ⅰ﹚所得函數(shù)的解析式及定義域,通過配方,根據(jù)二次函數(shù)的性質(zhì)可求得最值,進而確定電站所建的位置.

試題解析:(,即,

,

所以函數(shù)解析式為,定義域為

)由,

因為所以上單調(diào)遞增,所以當(dāng)時,.

故當(dāng)核電站建在距時,才能使供電費用最小,最小費用為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,現(xiàn)用一種新配方做試驗,生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗結(jié)果:

質(zhì)量指標(biāo)值

頻數(shù)

6

26

38

22

8

(1)將答題卡上列出的這些數(shù)據(jù)的頻率分布表填寫完整,并補齊頻率分布直方圖;

(2)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)與中位數(shù)(結(jié)果精確到0.1).

質(zhì)量指標(biāo)值分組

頻數(shù)

頻率

6

0.06

合計

100

1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和點,, ,.

(1)若點是圓上任意一點,求;

(2)過圓 上任意一點 與點的直線,交圓于另一點,連接,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠加工一批零件,加工過程中會產(chǎn)生次品,根據(jù)經(jīng)驗可知,其次品率與日產(chǎn)量(萬件)之間滿足函數(shù)關(guān)系式,已知每生產(chǎn)1萬件合格品可獲利2萬元,但生產(chǎn)1萬件次品將虧損1萬元.(次品率=次品數(shù)/生產(chǎn)量).

(1)試寫出加工這批零件的日盈利額(萬元)與日產(chǎn)量(萬件)的函數(shù);

(2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(c為常數(shù)),且f(1)=0.

(1)求c的值;

(2)證明函數(shù)f(x)在[0,2]上是單調(diào)遞增函數(shù);

(3)已知函數(shù)g(x)=f(ex),判斷函數(shù)g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C為銳角三角形ABC的三個內(nèi)角,若向量=(2-2sinA,cosA+sinA)與向量=(1+sinA,cosA-sinA)互相垂直.

(Ⅰ)求角A;

(Ⅱ)求函數(shù)y=2sin2B+cos的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的華為手機專賣店對該市市民使用華為手機的情況進行調(diào)查.在使用華為手機的用戶中,隨機抽取100名,按年齡(單位:歲)進行統(tǒng)計的頻率分布直方圖如圖:

(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)的估計值(均精確到個位);

(2)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加華為手機宣傳活動,再從這20人中年齡在的人群里,隨機選取2人各贈送一部華為手機,求這2名市民年齡都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中,、分別為棱、的中點,是線段上的點,且,若分別為線段、上的動點,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一條長36cm的直尺上刻劃n條刻度,使得用該尺能一次性度量中的任意整數(shù)cm的長度,試求n的最小值.

查看答案和解析>>

同步練習(xí)冊答案