【題目】紙是生活中最常用的紙規(guī)格.系列的紙張規(guī)格特色在于:①、、、…、,所有尺寸的紙張長寬比都相同.②在系列紙中,前一個序號的紙張以兩條長邊中點連線為折線對折裁剪分開后,可以得到兩張后面序號大小的紙,比如1張紙對裁后可以的到2張紙,1張紙對裁可以得到2張紙,以此類推.這是因為系列的紙張長寬比為這一特殊比例,所以具備這種特性.已知紙規(guī)格為84.1厘米×118.9厘米().那么紙的長度為( )

A.14.8厘米B.21厘米C.25.1厘米D.29.7厘米

【答案】D

【解析】

設(shè)紙的長為,寬為,根據(jù)題意,整理、、、紙的長寬與的關(guān)系,最后將值代入即可

設(shè)紙的長為,寬為,則由題意, 1張紙以長邊為中點對裁后可以的到2張紙,此時紙相鄰兩邊長度分別為,,即前一序號紙張的寬變?yōu)楝F(xiàn)紙張的長,按照該事實,可以得到紙的長為,寬為紙的長為,寬為;紙的長為,寬為

由題,,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)宣傳部組織了這樣一個游戲項目:甲箱子里面有3個紅球,2個白球,乙箱子里面有1個紅球,2個白球,這些球除了顏色以外,完全相同。每次游戲需要從這兩個箱子里面各隨機摸出兩個球.

(1)設(shè)在一次游戲中,摸出紅球的個數(shù)為,求分布列.

(2)若在一次游戲中,摸出的紅球不少于2個,則獲獎.

①求一次游戲中,獲獎的概率;

②若每次游戲結(jié)束后,將球放回原來的箱子,設(shè)4次游戲中獲獎次數(shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸為極軸的極坐標系中,圓的方程

1)寫出直線的普通方程和圓的直角坐標方程;

2)若點的直角坐標為,圓與直線交于兩點,求弦中點的直角坐標和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為O為坐標原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴重問題.實踐證明, 聲音強度(分貝)由公式 (為非零常數(shù))給出,其中為聲音能量.

(1)當聲音強度滿足時,求對應(yīng)的聲音能量滿足的等量關(guān)系式;

(2)當人們低聲說話,聲音能量為時,聲音強度為30分貝;當人們正常說話,聲音能量為時,聲音強度為40分貝.當聲音能量大于60分貝時屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會暫時性失聰.問聲音能量在什么范圍時,人會暫時性失聰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘畢達哥拉斯學(xué)派研究了“多邊形數(shù)”,人們把多邊形數(shù)推廣到空間,研究了“四面體數(shù)”,下圖是第一至第四個四面體數(shù),(已知

觀察上圖,由此得出第5個四面體數(shù)為______(用數(shù)字作答);第個四面體數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對于曲線f(x)=-exx(e為自然對數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1l2,則實數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若關(guān)于的不等式的解集為,求實數(shù)的值;

2)設(shè),若不等式都成立,求實數(shù)的取值范圍;

3)若時,求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃按月訂購一種飲料,每天進貨量相同,進貨成本每瓶3元,售價每瓶5元,每天未售出的飲料最后打4折當天全部處理完根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;

設(shè)六月份一天銷售這種飲料的利潤為單位:元,且六月份這種飲料一天的進貨量為單位:瓶,請判斷Y的數(shù)學(xué)期望是否在時取得最大值?

查看答案和解析>>

同步練習(xí)冊答案