已知橢圓的一個(gè)焦點(diǎn)為,且離心率為
(1)求橢圓方程;
(2)斜率為的直線過點(diǎn),且與橢圓交于兩點(diǎn),為直線上的一點(diǎn),若△為等邊三角形,求直線的方程.
(1);(2)直線的方程為,或.

試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)、直線與橢圓相交問題、韋達(dá)定理、兩點(diǎn)間距離公式、直線的方程等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,利用橢圓的標(biāo)準(zhǔn)方程中a,b,c的關(guān)系,焦點(diǎn)坐標(biāo),離心率列出方程組,解出a和b,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,點(diǎn)斜式設(shè)出直線方程,由于直線與橢圓交于A,B,則直線與橢圓方程聯(lián)立消參得到關(guān)于x的方程,設(shè)出A,B點(diǎn)坐標(biāo),利用韋達(dá)定理,得到,再結(jié)合兩點(diǎn)間距離公式求出的長(zhǎng),利用中點(diǎn)坐標(biāo)公式得出AB中點(diǎn)M的坐標(biāo),從而求出|MP|的長(zhǎng),利用為正三角形,則,列出等式求出k的值,從而得到直線的方程.
(1)依題意有,
可得,
故橢圓方程為.                  5分
(2)直線的方程為
聯(lián)立方程組
消去并整理得.   
設(shè)
,

設(shè)的中點(diǎn)為
可得,
直線的斜率為,又 ,
所以
當(dāng)△為正三角形時(shí),,
可得
解得.         
即直線的方程為,或.            13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:( )的離心率為,點(diǎn)(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點(diǎn)M(4,),其中,切點(diǎn)分別是A、B,試?yán)媒Y(jié)論:在橢圓上的點(diǎn)()處的橢圓切線方程是,證明直線AB恒過橢圓的右焦點(diǎn);
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)分別為,點(diǎn)為短軸的一個(gè)端點(diǎn),.
(1)求橢圓的方程;
(2)如圖,過右焦點(diǎn),且斜率為的直線與橢圓相交于兩點(diǎn),為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為.
求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓+y2=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,過F1作垂直于x軸的直線與橢圓相交,一個(gè)交點(diǎn)為P,則|PF2|=(  )
A.B.C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與雙曲線的焦點(diǎn)相同,且橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為,那么橢圓的離心率等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩點(diǎn)、,且的等差中項(xiàng),則動(dòng)點(diǎn)的軌跡方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)(2011•陜西)設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓+=1(a>b>0)的離心率為,則雙曲線-=1的漸近線方程為(  )
A.y=±x     B.y=±2x
C.y=±4x      D.y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過點(diǎn)和點(diǎn)
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線與橢圓交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案