P(x,y)在圓C:(x-1)2+(y-1)2=1上移動,試求x2+y2的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.
(1)求直線PQ與圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以直角坐標(biāo)系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),點C的極坐標(biāo)為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;
(2).試判斷直線l與圓C有位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C:x2+(y-3)2=4,一動直線l過A(-1,0)與圓C相交于P、Q兩點,

M是PQ中點,l與直線m:x+3y+6=0相交于N.
(1)求證:當(dāng)l與m垂直時,l必過圓心C;
(2)當(dāng)PQ=2時,求直線l的方程;
(3)探索·是否與直線l的傾斜角有關(guān)?若無關(guān),請求出其值;若有關(guān),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;
(2)圓C是否過定點?如果過定點,求出定點的坐標(biāo);如果不過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

內(nèi)有一點,為過點且傾斜角為的弦.

(1)當(dāng)時,求;
(2)當(dāng)弦被點平分時,求出直線的方程;
(3)設(shè)過點的弦的中點為,求點的坐標(biāo)所滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線y=x2-2x-3與坐標(biāo)軸的交點都在圓C上.
(1)求圓C的方程;
(2)若直線x+y+a=0與圓C交于A,B兩點,且AB=2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓x2y2-12x+32=0的圓心為Q,過點P(0,2)且斜率為k的直線l與圓Q相交于不同的兩點A,B.
(1)求圓Q的面積;
(2)求k的取值范圍;
(3)是否存在常數(shù)k,使得向量共線?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在直線上,且與軸交于兩點,.
(1)求圓的方程;
(2)求過點的圓的切線方程;
(3)已知,點在圓上運動,求以,為一組鄰邊的平行四邊形的另一個頂點軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案