已知向量a=e1-e2,b=4e1+3e2,其中e1=(1,0),e2=(0,1)

(1)試計(jì)算a·b及|a+b|的值;

(2)求向量ab夾角的余弦值.

解:(1)a=e1-e2=(1,0)-(0,1)=(1,-1),

b=4e1+3e2=4(1,0)+3(0,1)=(4,3).

a·b=4×1+3×(-1)=1,

|a+b|=

(2)由a·b=|a||b|cosθ,

∴cosθ=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量
e1
=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過點(diǎn)M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數(shù))相交于A、B兩點(diǎn),試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實(shí)數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
(1)求異面直線EG與BD所成角的大小;
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為
4
5
?若存在,求出線段CQ的長(zhǎng);若不存在,請(qǐng)說明理由.
(文)已知坐標(biāo)平面內(nèi)的一組基向量為
e
1
=(1,sinx)
e
2
=(0,cosx)
,其中x∈[0,
π
2
)
,且向量
a
=
1
2
e
1
+
3
2
e
2

(1)當(dāng)
e
1
e
2
都為單位向量時(shí),求|
a
|

(2)若向量
a
和向量
b
=(1,2)
共線,求向量
e
1
e
2
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知A、B是橢圓的一條弦,向量AB交于M,且,以M為焦點(diǎn),以橢圓的右準(zhǔn)線為相應(yīng)的雙曲線與直線AB交于N(4-1)。

1)求橢圓的離心率e;

2)設(shè)雙曲線的離心率為e2,e1+e2=f(a),求f(a)的解析式,并求它的定義域和值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量
e1
=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過點(diǎn)M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數(shù))相交于A、B兩點(diǎn),試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實(shí)數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面l上L的方向向量e=(-,),點(diǎn)O(0,0)和A(1,-2)在L上的射影分別是O1和A1,則e1,其中λ等于(    )

A.                B.-                   C.2                  D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案