【題目】某小學(xué)對五年級的學(xué)生進行體質(zhì)測試,已知五年一班共有學(xué)生30人,測試立定跳遠的成績用莖葉圖表示如圖(單位:):男生成績在175以上(包括175)定義為“合格”,成績在175以下(不包括175)定義為“不合格”.女生成績在165以上(包括165)定義為“合格”,成績在165以下(不包括165)定義為“不合格”.
(1)求五年一班的女生立定跳遠成績的中位數(shù);
(2)在五年一班的男生中任意選取3人,求至少有2人的成績是合格的概率;
(3)若從五年一班成績“合格”的學(xué)生中選取2人參加復(fù)試,用表示其中男生的人數(shù),寫出的分布列,并求的數(shù)學(xué)期望.
【答案】(1)166.5cm (2) (3)見解析
【解析】
(1)按照中位數(shù)的定義,可以根據(jù)莖葉圖得到五年一班的女生立定跳遠成績的中位數(shù);
(2) 男生中任意選取3人,至少有2人的成績是合格,包括兩個事件:一個為事件 :“僅有兩人的成績合格”,另一個為事件 :“有三人的成績合格”,所以至少有兩人的成績是合格的概率:,分別求出,最后求出;
(3) 因為合格的人共有18人,其中有女生有10人合格,男生有8人合格,依題意,的取值為0,1,2,分別求出的值,最后列出的分布列和計算出的數(shù)學(xué)期望.
解:(1)由莖葉圖得五年一班的女生立定跳遠成績的中位數(shù)為
(2)設(shè)“僅有兩人的成績合格”為事件,“有三人的成績合格”為事件,
至少有兩人的成績是合格的概率:,
又男生共12人,其中有8人合格,從而,
,所以.
(3)因為合格的人共有18人,其中有女生有10人合格,男生有8人合格,
依題意,的取值為0,1,2,
則 ,
因此,X的分布列如下:
| 0 | 1 | 2 |
|
|
|
(人).
或是,因為服從超幾何分布,所以(人).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,橢圓上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線 與橢圓交于兩點,點(0,1),且=,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex﹣+x,其中∈R,e是自然對數(shù)的底數(shù).
(1)當>0時,討論函數(shù)f(x)在(1,+∞)上的單調(diào)性;
(2)若函數(shù)g(x)=f(x)+2﹣,證明:使g(x)≥0在上恒成立的實數(shù)a能取到的最大整數(shù)值為1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點( )
A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變
B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變
C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變
D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的各項都是正數(shù),若對于任意的正整數(shù),存在,使得、、成等比數(shù)列,則稱函數(shù)為“型”數(shù)列.
(1)若是“型”數(shù)列,且,,求的值;
(2)若是“型”數(shù)列,且,,求的前項和;
(3)若既是“型”數(shù)列,又是“型”數(shù)列,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線和上.經(jīng)測量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營,打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點,并要求與扇形弧相切于點.設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計.
(1)試將公路的長度表示為的函數(shù),并寫出的取值范圍;
(2)試確定的值,使得公路的長度最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,B是AC的中點,,P是平行四邊形BCDE內(nèi)(含邊界)的一點,且.有以下結(jié)論:
①當x=0時,y∈[2,3];
②當P是線段CE的中點時,;
③若x+y為定值1,則在平面直角坐標系中,點P的軌跡是一條線段;
④x﹣y的最大值為﹣1;
其中你認為正確的所有結(jié)論的序號為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com