【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)設PC與平面ABCD所成的角的正弦為,AP=1,AD=,求三棱錐E-ACD的體積.

【答案】(1)見證明;(2)

【解析】

(1)連結(jié)BDAC于點O,連結(jié)EO,推導出EO∥PB,由此能證明PB∥平面AEC.

(2)根據(jù)題意可得即為設PC與平面ABCD所成的角故,可得

根據(jù)勾股定理可得 ,由此可求

三棱錐E-ACD的體積

(1)連接BD交AC于點F,連接EF

則在三角形BDP中,點E是PD的中點,點F是BD的中點,即線段EF是的中位線

所以PB‖EF,又因為PB平面AEC,EF平面AEC,所以PB‖平面AEC

(2)根據(jù)題意可得即為設PC與平面ABCD所成的角,故,可得

根據(jù)勾股定理可得,所以 ,三棱錐E-ACD的高為,所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在長方體中,下列計算結(jié)果一定不等于0的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于旋轉(zhuǎn)體的體積,有如下的古爾。guldin)定理:平面上一區(qū)域D繞區(qū)域外一直線(區(qū)域D的每個點在直線的同側(cè),含直線上)旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積,等于D的面積與D的幾何中心(也稱為重心)所經(jīng)過的路程的乘積.利用這一定理,可求得半圓盤,繞直線x旋轉(zhuǎn)一周所形成的空間圖形的體積為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,是邊長為4的正三角形, 分別為的中點,且.

(1)證明:平面ABC;

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,頂點在底面的射影恰好是菱形對角線的交點,且,,,其中.

(1)當時,求證:;

(2)當與平面所成角的正弦值為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機器生產(chǎn)商,對一次性購買兩臺機器的客戶推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修方案:

方案一:交納延保金元,在延保的兩年內(nèi)可免費維修次,超過次每次收取維修費元;

方案二:交納延保金元,在延保的兩年內(nèi)可免費維修次,超過次每次收取維修費元.

某工廠準備一次性購買兩臺這種機器,現(xiàn)需決策在購買機器時應購買哪種延保方案,為此搜集并整理了臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),統(tǒng)計得下表:

維修次數(shù)

0

1

2

3

機器臺數(shù)

20

10

40

30

以上臺機器維修次數(shù)的頻率代替一臺機器維修次數(shù)發(fā)生的概率,記表示這兩臺機器超過質(zhì)保期后延保兩年內(nèi)共需維修的次數(shù).

的分布列;

以所需延保金與維修費用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中,邊,,令,,過邊上一點(異于端點)引邊的垂線,垂足為,再由引邊的垂線,垂足為,又由引邊的垂線,垂足為,同樣的操作連續(xù)進行,得到點列、、,設);

1)求;

2)結(jié)論是否正確?請說明理由;

3)若對于任意,不等式恒成立,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,點在橢圓上,且的最小值是為坐標原點).

1)求橢圓的標準方程.

2)已知動直線與圓相切,且與橢圓交于,兩點.是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案