【題目】銷售甲、乙兩種商品所得利潤分別是P(萬元)和Q(萬元),它們與投入資金t(萬元)的關(guān)系有經(jīng)驗公式P=3 ,Q=t.今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(萬元).求:
(1)經(jīng)營甲、乙兩種商品的總利潤y(萬元)關(guān)于x的函數(shù)表達(dá)式;
(2)怎樣將資金分配給甲、乙兩種商品,能使得總利潤y達(dá)到最大值,最大值是多少?

【答案】
(1)解:根據(jù)題意,得 ,x∈[0,3]
(2)解:

∈[0,3],∴當(dāng) = 時,即x= ,3﹣x= 時,

即給甲、乙兩種商品分別投資 萬元、 萬元可使總利潤達(dá)到最大值 萬元


【解析】(1)利潤函數(shù)為y=甲商品所得的利潤P+乙商品所得的利潤 ,其中定義域為x∈[0,3];(2) .由二次函數(shù)的性質(zhì),得函數(shù)的最大值以及對應(yīng)的x值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為

(1)求及基地的預(yù)期收益;

(2)若該基地額外聘請工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無雨時收益為萬元,有雨時收益為萬元,且額外聘請工人的成本為元,問該基地是否應(yīng)該額外聘請工人,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= 則不等式f(x)>f(1)的解集是(
A.(﹣3,1)∪(3,+∞)
B.(﹣3,1)∪(2,+∞)
C.(﹣1,1)∪(3,+∞)
D.(﹣∞,﹣3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線),焦點到準(zhǔn)線的距離為,過點作直線交拋物線于點(點在第一象限).

()若點焦點重合,且弦長,求直線的方程;

()若點關(guān)于軸的對稱點為,直線x軸于點,且,求證:點B的坐標(biāo)是,并求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=﹣x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

(1)到第幾年末總利潤最大,最大值是多少?

(2)到第幾年末年平均利潤最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目, 兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.

(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊第六位選手的成績;

(2)主持人從隊所有選手成績中隨機抽2個,求至少有一個為“晉級”的概率;

(3)主持人從兩隊所有選手成績分別隨機抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案