已知.
(1)若曲線(xiàn)在處的切線(xiàn)與直線(xiàn)平行,求a的值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間.
(1);(2)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為
解析試題分析:(1)先求導(dǎo),由直線(xiàn)方程可知此直線(xiàn)斜率為2,則曲線(xiàn)在處的切線(xiàn)的斜率也為2.由導(dǎo)數(shù)的幾何意義可知。即可得的值。(2)先求導(dǎo),再令導(dǎo)數(shù)大于0得增區(qū)間,令導(dǎo)數(shù)小于0得減區(qū)間。
(1) 由題意得時(shí)
∴
∴ 6分
(2) ∵ ,∴
∴,令,得
令,得
∴單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為 13分
考點(diǎn):1導(dǎo)數(shù)的幾何意義;2用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(為常數(shù)).
(1)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)當(dāng)時(shí),試判斷的單調(diào)性;
(3)若對(duì)任意的,使不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=+ln x(a≠0,a∈R).求函數(shù)f(x)的極值和單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
用長(zhǎng)為18 m的鋼條圍成一個(gè)長(zhǎng)方體容器的框架,如果所制的容器的長(zhǎng)與寬之比為2∶1,那么高為多少時(shí)容器的容積最大?并求出它的最大容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì),有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,,,其中。
(1)若與的圖像在交點(diǎn)(2,)處的切線(xiàn)互相垂直,
求的值;
(2)若是函數(shù)的一個(gè)極值點(diǎn),和1是的兩個(gè)零點(diǎn),
且∈(,求;
(3)當(dāng)時(shí),若,是的兩個(gè)極值點(diǎn),當(dāng)|-|>1時(shí),
求證:|-|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,把邊長(zhǎng)為10的正六邊形紙板剪去相同的六個(gè)角,做成一個(gè)底面為正六邊形的無(wú)蓋六棱柱盒子,設(shè)其高為h,體積為V(不計(jì)接縫).
(1)求出體積V與高h(yuǎn)的函數(shù)關(guān)系式并指出其定義域;
(2)問(wèn)當(dāng)為多少時(shí),體積V最大?最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com