【題目】近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.某品牌公司一直默默拓展海外市場,在海外設(shè)了多個分支機(jī)構(gòu),現(xiàn)需要國內(nèi)公司外派大量中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從中青年員工中隨機(jī)調(diào)查了位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
中年員工 | |||
青年員工 | |||
合計 |
由并參照附表,得到的正確結(jié)論是
附表:
0.10 | 0.01 | 0.001 | |
2.706 | 6.635 | 10.828 |
A. 在犯錯誤的概率不超過10%的前提下,認(rèn)為 “是否愿意外派與年齡有關(guān)”;
B. 在犯錯誤的概率不超過10%的前提下,認(rèn)為 “是否愿意外派與年齡無關(guān)”;
C. 有99% 以上的把握認(rèn)為“是否愿意外派與年齡有關(guān)”;
D. 有99% 以上的把握認(rèn)為“是否愿意外派與年齡無關(guān)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求實數(shù)k的值;
(2)設(shè)函數(shù),若方程只有一個實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求實數(shù)的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若存在,使得函數(shù)在區(qū)間上的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,函數(shù)在區(qū)間上的最大值是,最小值是,求的值;
(2)用定義法證明在其定義域上是減函數(shù);
(3)設(shè), 若對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的最大值;
(2)當(dāng)時,函數(shù)有最小值. 記的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,三個內(nèi)角的對邊分別為.
(1)若是的等差中項,是的等比中項,求證:為等邊三角形;
(2)若為銳角三角形,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]上任取的一個實數(shù),b是從區(qū)間[0,2]上任取的一個實數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知參加某項活動的六名成員排成一排合影留念,且甲乙兩人均在丙領(lǐng)導(dǎo)人的同側(cè),則不同的排法共有( )
A. 240種 B. 360種 C. 480種 D. 600種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com