設tanα,tanβ是方程x2-3x+2=0的兩個根,則tan(α+β)的值為
-3
-3
分析:由tanα,tanβ是方程x2-3x+2=0的兩個根,利用根與系數(shù)的關系分別求出tanα+tanβ及tanαtanβ的值,然后將tan(α+β)利用兩角和與差的正切函數(shù)公式化簡后,將tanα+tanβ及tanαtanβ的值代入即可求出值.
解答:解:∵tanα,tanβ是方程x2-3x+2=0的兩個根,
∴tanα+tanβ=3,tanαtanβ=2,
則tan(α+β)=
tanαtanβ
1-tanαtanβ
=
3
1-2
=-3

故答案為:-3
點評:此題考查了兩角和與差的正切函數(shù)公式,以及根與系數(shù)的關系,利用了整體代入的思想,熟練掌握公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設tanα、tanβ是關于x的方程mx2-2x
7m-3
+2m=0
的兩個實根,求函數(shù)f(m)=tan(α+β)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設tanα、tanβ是方程x3+3
3
x+4=0
的兩根,且a∈(-
π
2
,
π
2
)
β∈(-
π
2
,
π
2
)

則α+β的值為:( 。
A、-
3
B、
π
3
C、
π
3
或-
3
D、-
π
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設tanθ和tan(
π
4
-θ)是方程x2+px+q=0的兩個根,則p、q之間的關系是( 。
A、p+q+1=0
B、p-q+1=0
C、p+q-1=0
D、p-q-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•重慶)設tanα,tanβ是方程x2-3x+2=0的兩個根,則tan(α+β)的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:013

設tanα和tanβ是關于x的一元二次方程mx2+(2m-3)x+(m-2)=0的兩根,則tan(α+β)的最小值是

[  ]

A.
B.
C.-
D.不存在

查看答案和解析>>

同步練習冊答案