【題目】某市一次全市高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市100000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于160 cm184 cm之間,將測(cè)量結(jié)果按如下方式分成6組:第1[160,164),第2[164,168),,第6[180,184],如圖是按上述分組方法得到的頻率分布直方圖.

(1)由頻率分布直方圖估計(jì)該校高三年級(jí)男生平均身高狀況;

(2)求這50名男生身高在172 cm以上(172 cm)的人數(shù);

(3)在這50名男生身高在172 cm以上(172 cm)的人中任意抽取2人,將該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

參考數(shù)據(jù):若ξN(μ,σ2),則P(μσ<ξ≤μσ)0.6826,P(μ2σ<ξ≤μ2σ)0.9544,P(μ3σ<ξ≤μ3σ)0.9974.

【答案】)高于全市的平均值168。

)這50名男生身高在172 cm以上(172 cm)的人數(shù)為10.

【解析】

試題()由直方圖,經(jīng)過計(jì)算該校高三年級(jí)男生平均身高為

,

高于全市的平均值168(或者:經(jīng)過計(jì)算該校高三年級(jí)男生平均身高為168.72,比較接近全市的平均值168. …………………………………………………………4分)

)由頻率分布直方圖知,后三組頻率為(0.02+0.02+0.01×40.2,人數(shù)為0.2×510,即這50名男生身高在172 cm以上(172 cm)的人數(shù)為10. ……………6分)

,

,0.0013×100 000=130.

所以,全市前130名的身高在180 cm以上,這50人中180 cm以上的有2.

隨機(jī)變量可取,于是

,,

. …………………12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證:對(duì)于恒成立;

(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)x,y滿足條件,則點(diǎn)的運(yùn)動(dòng)軌跡是( )

A.橢圓B.雙曲線C.拋物線D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸的交點(diǎn)為,夾角為,與軸、軸正向同向的單位向量分別是,.由平面向量基本定理,對(duì)于平面內(nèi)的任一向量,存在唯一的有序?qū)崝?shù)對(duì),使得,我們把叫做點(diǎn)在斜坐標(biāo)系中的坐標(biāo)(以下各點(diǎn)的坐標(biāo)都指在斜坐標(biāo)系中的坐標(biāo)).

1)若為單位向量,且的夾角為,求點(diǎn)的坐標(biāo);

2)若,點(diǎn)的坐標(biāo)為,求向量的夾角;

3)若,求過點(diǎn)的直線的方程,使得原點(diǎn)到直線的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班隨機(jī)抽查了名學(xué)生的數(shù)學(xué)成績,分?jǐn)?shù)制成如圖的莖葉圖,其中組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間不足個(gè)小時(shí),組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間達(dá)到一個(gè)小時(shí),學(xué)校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達(dá)標(biāo),分以下記為未達(dá)標(biāo).

1)根據(jù)莖葉圖完成下面的列聯(lián)表:

達(dá)標(biāo)

未達(dá)標(biāo)

總計(jì)

總計(jì)

2)判斷是否有的把握認(rèn)為“數(shù)學(xué)成績達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).

參考公式與臨界值表:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的方程為,曲線是以坐標(biāo)原點(diǎn)為頂點(diǎn),直線為準(zhǔn)線的拋物線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)分別求出直線與曲線的極坐標(biāo)方程:

(2)點(diǎn)是曲線上位于第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),點(diǎn)是直線上位于第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),且,請(qǐng)求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為鼓勵(lì)家校互動(dòng),與某手機(jī)通訊商合作,為教師辦理流量套餐.為了解該校教師手機(jī)流量使用情況,通過抽樣,得到位教師近年每人手機(jī)月平均使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如下:

若將每位教師的手機(jī)月平均使用流量分別視為其手機(jī)月使用流量,并將頻率為概率,回答以下問題.

(Ⅰ) 從該校教師中隨機(jī)抽取人,求這人中至多有人月使用流量不超過 的概率;

(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:

套餐名稱

月套餐費(fèi)(單位:元)

月套餐流量(單位:)

這三款套餐都有如下附加條款:套餐費(fèi)月初一次性收取,手機(jī)使用一旦超出套餐流量,系統(tǒng)就自動(dòng)幫用戶充值 流量,資費(fèi)元;如果又超出充值流量,系統(tǒng)就再次自動(dòng)幫用戶充值 流量,資費(fèi)元/次,依次類推,如果當(dāng)月流量有剩余,系統(tǒng)將自動(dòng)清零,無法轉(zhuǎn)入次月使用.

學(xué)校欲訂購其中一款流量套餐,為教師支付月套餐費(fèi),并承擔(dān)系統(tǒng)自動(dòng)充值的流量資費(fèi)的,其余部分由教師個(gè)人承擔(dān),問學(xué)校訂購哪一款套餐最經(jīng)濟(jì)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱

C. 過空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條

D. 過球面上任意兩點(diǎn)的大圓有且只有一個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案