已知橢圓 的左、右焦點(diǎn)分別是、,是橢圓右準(zhǔn)線上的一點(diǎn),線段的垂直平分線過點(diǎn).又直線:按向量平移后的直線是,直線:按向量平移后的直線是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當(dāng)離心率最小且時(shí),求橢圓的方程。
(3)若直線與相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個(gè)橢圓交于、兩點(diǎn),與這個(gè)橢圓交于、兩點(diǎn)。求四邊形ABCD面積的取值范圍。
(1);(2);(3) .
【解析】
試題分析:(1)要求離心率e的范圍,就要找出含e的不等式.這個(gè)不等式從哪里來?
線段的垂直平分線過點(diǎn),所以,兩邊除以得:,解這個(gè)不等式即可得離心率的取值范圍:.(2)由(1)知的最小值為,即.
又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040804042765788219/SYS201404080405023766898086_DA.files/image014.png">,這樣便得一個(gè)方程組,解這個(gè)方程組即可.
(3)據(jù)條件知直線與相互垂直,所以四邊形ABCD的對角線互相垂直,其面積.
求出直線與的方程,聯(lián)立起來解方程組便可得交點(diǎn)P的坐標(biāo).因?yàn)榻粦?zhàn)點(diǎn)P在橢圓內(nèi),據(jù)此可得m的范圍.接下來將直線的方程與橢圓的方程聯(lián)立,再用弦長公式,可得弦AC,再將與橢圓的方程聯(lián)立,可得弦BD,由此可得四邊形ABCD面積與m的函數(shù)關(guān)系式,再用前面求得的m的范圍,就可求出這個(gè)函數(shù)式的范圍,即四邊形ABCD面積的取值范圍.
試題解析:(1)設(shè)橢圓的焦距是,則據(jù)條件有
解之得: 3分
(2)據(jù)(1)知,又,得橢圓的方程是
6分
(3)據(jù)條件有
:
: 7分
由 解得
因在橢圓內(nèi),有 9分
又由,消去得
所以
據(jù)對稱性易知 12分
所以 13分
而,所以 14分
考點(diǎn):1、直線與圓錐曲線的位置關(guān)系;2、函數(shù)的范圍;3、不等關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044
如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動點(diǎn)P滿足,()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦
點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).
(1)求雙曲線的方程;
(2)若直線與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,求的范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com