某工廠有A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一種甲產(chǎn)品使用4個(gè)A配件耗時(shí)1h,每生產(chǎn)一件乙產(chǎn)品使用4個(gè)B配件耗時(shí)2h,該廠每天最多可從配件廠獲得16個(gè)A配件和12個(gè)B配件,按每天8h計(jì)算,若生產(chǎn)一件甲產(chǎn)品獲利2萬(wàn)元,生產(chǎn)一件乙產(chǎn)品獲利3萬(wàn)元,采用哪種生產(chǎn)安排利潤(rùn)最大?
每天生產(chǎn)甲產(chǎn)品件,乙產(chǎn)品件時(shí),工廠可獲得最大利潤(rùn)萬(wàn)元.

試題分析:由題意可知,若設(shè)甲、乙兩種產(chǎn)品分別生產(chǎn),件,工廠獲得的利潤(rùn)為,則可得,從而問題就等價(jià)于在線性約束條件下,求線性目標(biāo)函數(shù),作出不等式組所表示的可行域,在作出直線,通過平移直線,即可知,使目標(biāo)函數(shù)取得最大值的點(diǎn)為直線與直線的交點(diǎn),從而得到每天生產(chǎn)甲產(chǎn)品件,乙產(chǎn)品件時(shí),工廠可獲得最大利潤(rùn)萬(wàn)元.
.
試題解析:設(shè)甲、乙兩種產(chǎn)品分別生產(chǎn),件,工廠獲得的利潤(rùn)為,由題意可得    2分
,       5分  目標(biāo)函數(shù)為,      6分
作出線性約束條件表示的可行域如下圖所示:

變形為,這是斜率為,在軸上截距為的直線,當(dāng)變化時(shí),可以得到一族相互平行的直線,當(dāng)截距最大時(shí),取得最大值,由上圖可以看出,,當(dāng)直線與直線的交點(diǎn)時(shí),截距的值最大,最大值為,此時(shí),∴每天生產(chǎn)甲產(chǎn)品件,乙產(chǎn)品件時(shí),工廠可獲得最大利潤(rùn)萬(wàn)元.          12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四個(gè)結(jié)論中,正確結(jié)論為( 。
A.當(dāng)x>0且x≠1時(shí),lgx+
1
lgx
≥2
B.當(dāng)x>0時(shí),
x
+
1
x
≥2
C.當(dāng)x≥0時(shí),x+
1
x
的最小值為2
D.當(dāng)x>0時(shí),x3+
1
x
的最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若不等式組,表示的平面區(qū)域是一個(gè)三角形區(qū)域,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

不等式組表示的平面區(qū)域是一個(gè)(  ).
A.三角形B.直角三角形C.梯形D.矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

的最大值是3,則的值是              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)在直線的右下方,則(     )
A.2a-b+3<0 B.2a-b+3>0 C.2a-b+3=0D.以上都不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若變量、滿足約束條件,則的最大值是(   )
A.2B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若變量、滿足約束條件,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知的三邊長(zhǎng)滿足,,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案