精英家教網 > 高中數學 > 題目詳情
下面有五個命題:
(1)函數y=sin4x-cos4x的最小正周期是π;
(2)終邊在y軸上的角的集合是{a|a=
2
,k∈Z};  
(3)在同一坐標系中,函數y=sinx的圖象和y=x的圖象僅有一個公共點;
(4)把函數y=3sin(2x+
π
3
)的圖象向右平移
π
6
個單位得到y(tǒng)=sin2x的圖象;
(5)函數y=sin(
π
2
-x)在(0,π)上是增函數.
其中,真命題的編號是
(1)(3)
(1)(3)
.(寫出所有真命題的編號)
分析:函數y=sin4x-cos4x=sin2x-cos2x,=-cos2x,由此知函數y=sin4x-cos4x的最小正周期是π;終邊在y軸上的角的集合是{a|a=kπ+
π
2
,k∈Z};坐標系中,函數y=sinx的圖象和y=x的圖象僅有一個公共點; 把函數y=3sin(2x+
π
3
)的圖象向右平移
π
6
個單位得到y(tǒng)=3sin2x的圖象;函數y=sin(
π
2
-x)=cosx在(0,π)上是減函數.
解答:解:∵函數y=sin4x-cos4x
=sin2x-cos2x
=-cos2x,
∴函數y=sin4x-cos4x的最小正周期是π,即(1)成立;
∵終邊在y軸上的角的集合是{a|a=kπ+
π
2
,k∈Z},即(2)不成立;
在同一坐標系中,函數y=sinx的圖象和y=x的圖象原點這一個公共點,
∵sinx=x只有一個解,
x>0時,
sinx<x;
x<0時,
sinx>x;
x=0時,
sinx=x.
故(3)成立; 
把函數y=3sin(2x+
π
3
)的圖象向右平移
π
6
個單位得到y(tǒng)=3sin2x的圖象,故(4)不成立;
函數y=sin(
π
2
-x)=cosx在(0,π)上是減函數,故(5)不成立.
故答案為:(1),(3).
點評:本題考查誘導公式的靈活運用,解題時要認真審題,仔細解答,注意三角函數的恒等變換.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下面有五個命題:
(1)要得到y=2sin(2x+
3
)
圖象,需要將函數y=2sin2x圖象向左平移
3
個單位;
(2)在△ABC中,表達式cos(B+C)+cosA為常數;
(3)設
a0
b0
分別是單位向量,則|
a0
+
b0
|=2
;
(4)y=cosx(0≤x≤2π)的圖象和直線y=1圍成一個封閉的平面圖形,該圖形的面積是2π.
其中真命題的序號是
(2)(4)
(2)(4)
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

下面有五個命題:
(1)函數y=sin4x-cos4x的最小正周期是π;
(2)終邊在y軸上的角的集合是{a|a=數學公式,k∈Z}; 
(3)在同一坐標系中,函數y=sinx的圖象和y=x的圖象僅有一個公共點;
(4)把函數y=3sin(2x+數學公式)的圖象向右平移數學公式個單位得到y(tǒng)=sin2x的圖象;
(5)函數y=sin(數學公式-x)在(0,π)上是增函數.
其中,真命題的編號是________.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

下面有五個命題:
(1)要得到數學公式圖象,需要將函數y=2sin2x圖象向左平移數學公式個單位;
(2)在△ABC中,表達式cos(B+C)+cosA為常數;
(3)設數學公式分別是單位向量,則數學公式;
(4)y=cosx(0≤x≤2π)的圖象和直線y=1圍成一個封閉的平面圖形,該圖形的面積是2π.
其中真命題的序號是________(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

下面有五個命題:
(1)要得到y=2sin(2x+
3
)
圖象,需要將函數y=2sin2x圖象向左平移
3
個單位;
(2)在△ABC中,表達式cos(B+C)+cosA為常數;
(3)設
a0
,
b0
分別是單位向量,則|
a0
+
b0
|=2
;
(4)y=cosx(0≤x≤2π)的圖象和直線y=1圍成一個封閉的平面圖形,該圖形的面積是2π.
其中真命題的序號是______(寫出所有真命題的編號)

查看答案和解析>>

同步練習冊答案