【題目】如圖的程序圖的算法思路中是一種古老而有效的算法﹣﹣輾轉(zhuǎn)相除法,執(zhí)行改程序框圖,若輸入的m,n的值分別為30,42,則輸出的m=( 。

A.0
B.2
C.3
D.6

【答案】D
【解析】解:模擬程序框圖的運行過程,如下;
m=30,n=42,30÷42=0,余數(shù)是30,r=30,
m=42,n=30,
不滿足條件r=0,42÷30=1,余數(shù)是12,r=12,m=30,n=12,
不滿足條件r=0,30÷12=2,余數(shù)是6,r=6,m=12,n=6,
不滿足條件r=0,12÷6=2,余數(shù)是0,r=0,m=6,n=0,
滿足條件r=0,退出循環(huán),輸出m的值為6.
故選:D.

【考點精析】本題主要考查了程序框圖的相關知識點,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P ABCD中,E是棱PC上一點,且2,底面ABCD是邊長為2的正方形,△PAD為正三角形,平面ABE與棱PD交于點F,平面PCD與平面PAB交于直線l,且平面PAD⊥平面ABCD.

(1)求證:l∥EF;

(2)求四棱錐P-ABEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在各項均為正數(shù)的等比數(shù)列,,且,成等差數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若數(shù)列滿足,為數(shù)列的前項和. 設,當最大時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的S為(  )

A.2
B.
C.-
D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設不等式mx2-2x-m+1<0對于滿足|m|≤2的一切m的值都成立,求x的取值范圍.

【答案】

【解析】

令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)0對滿足|m|≤2的一切m的值都成立,利用一次函數(shù)的單調(diào)性可得:f(﹣2)<0,f(2)<0.解出即可.

令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)0對滿足|m|≤2的一切m的值都成立,

則需要f(﹣2)<0,f(2)<0.

解不等式組,解得

x的取值范圍是

【點睛】

本題考查了一次函數(shù)的單調(diào)性、一元二次不等式的解法,考查了轉(zhuǎn)化方法,考查了推理能力與計算能力,屬于中檔題.

型】解答
束】
21

【題目】某廠有一批長為18m的條形鋼板,可以割成1.8m和1.5m長的零件.它們的加工費分別為每個1元和0.6元.售價分別為20元和15元,總加工費要求不超過8元.問如何下料能獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(1)=0,當x<0時,xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( 。
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(1,2,3),B(2,1,2),C(1,1,2),O為坐標原點,點D在直線OC上運動,則當·取最小值時,點D的坐標為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在側棱垂直底面的四棱柱中, , ,的中點,是平面與直線的交點.

(1)證明: ;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m對一切實數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案