設(shè)橢圓(常數(shù))的左右焦點(diǎn)分別為是直線上的兩個動點(diǎn),

(1)若,求的值;

(2)求的最小值.

【解析】第一問中解:設(shè),

    由,得

  ② 

第二問易求橢圓的標(biāo)準(zhǔn)方程為:

,

所以,當(dāng)且僅當(dāng)時,取最小值

解:設(shè) ……………………1分

,由     ①……2分

(1)由,得  ②   ……………1分

    ③    ………………………1分

由①、②、③三式,消去,并求得. ………………………3分

(2)解法一:易求橢圓的標(biāo)準(zhǔn)方程為:.………………2分

, ……4分

所以,當(dāng)且僅當(dāng)時,取最小值.…2分

解法二:, ………………4分

所以,當(dāng)且僅當(dāng)時,取最小值

 

【答案】

(1)     (2)取最小值

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的對稱中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2
5
,點(diǎn)(
5
,
4
3
)
在該橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的一點(diǎn)p在第一象限,且滿足PF1⊥PF2,⊙O的方程為x2+y2=4.求點(diǎn)p坐標(biāo),并判斷直線pF2與⊙O的位置關(guān)系;
(3)設(shè)點(diǎn)A為橢圓的左頂點(diǎn),是否存在不同于點(diǎn)A的定點(diǎn)B,對于⊙O上任意一點(diǎn)M,都有
MB
MA
為常數(shù),若存在,求所有滿足條件的點(diǎn)B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓
x2
4
+y2=1
的左右焦點(diǎn),過左焦點(diǎn)F1作直線l與橢圓交于不同的兩點(diǎn)A、B.
(Ⅰ)若OA⊥OB,求AB的長;
(Ⅱ)在x軸上是否存在一點(diǎn)M,使得
MA
MB
為常數(shù)?若存在,求出M點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)二模)設(shè)橢圓C:x2+2y2=2b2(常數(shù)b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,M,N是直線l:x=2b上的兩個動點(diǎn),
F1M
F2N
=0

(1)若|
F1M
|=|
F2N
|=2
5
,求b的值;
(2)求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別是橢圓
x2
4
+y2=1
的左右焦點(diǎn),過左焦點(diǎn)F1作直線l與橢圓交于不同的兩點(diǎn)A、B.
(Ⅰ)若OA⊥OB,求AB的長;
(Ⅱ)在x軸上是否存在一點(diǎn)M,使得
MA
MB
為常數(shù)?若存在,求出M點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案