在平面直角坐標系xOy中,已知點A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實數(shù),矩陣M=,N=,點A、B、C在矩陣MN對應(yīng)的變換下得到點分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用4練習(xí)卷(解析版) 題型:填空題
已知a,b為正實數(shù),函數(shù)f(x)=ax3+bx+2x在[0,1]上的最大值為4,則f(x)在[-1,0]上的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題
從甲、乙、丙等5名候選學(xué)生中選2名作為青年志愿者,則甲、乙、丙中有2個被選中的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用1練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用1練習(xí)卷(解析版) 題型:填空題
已知f(x)=ln(1+x)的定義域為集合M,g(x)=2x+1的值域為集合N,則M∩N=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用18練習(xí)卷(解析版) 題型:解答題
對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
(1)證明:f(3k)=3f(k);
(2)求f(3k-1)(k∈N*)的值;
(3)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用17練習(xí)卷(解析版) 題型:解答題
形狀如圖所示的三個游戲盤中(圖①是正方形,M,N分別是所在邊中點,圖②是半徑分別為2和4的兩個同心圓,O為圓心,圖③是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.
(1)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(2)用隨機變量X表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機變量X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用14練習(xí)卷(解析版) 題型:解答題
已知關(guān)于x的不等式|ax-2|+|ax-a|≥2(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用10練習(xí)卷(解析版) 題型:解答題
正項數(shù)列{an}的前n項和Sn滿足:-(n2+n-1)Sn-(n2+n)=0.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn< .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com