【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C與A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標(biāo)原點(diǎn)O在圓M上;
(Ⅱ)設(shè)圓M過點(diǎn)P(4,﹣2),求直線l與圓M的方程.
【答案】解:方法一:證明:(Ⅰ)當(dāng)直線l的斜率不存在時(shí),則A(2,2),B(2,﹣2),
則 =(2,2), =(2,﹣2),則 =0,
∴ ⊥ ,
則坐標(biāo)原點(diǎn)O在圓M上;
當(dāng)直線l的斜率存在,設(shè)直線l的方程y=k(x﹣2),設(shè)A(x1 , y1),B(x2 , y2),
,整理得:k2x2﹣(4k2+2)x+4k2=0,
則x1x2=4,4x1x2=y12y22=(y1y2)2 , 由y1y2<0,
則y1y2=﹣4,
由 =x1x2+y1y2=0,
則 ⊥ ,則坐標(biāo)原點(diǎn)O在圓M上,
綜上可知:坐標(biāo)原點(diǎn)O在圓M上;
方法二:設(shè)直線l的方程x=my+2,
,整理得:y2﹣2my﹣4=0,設(shè)A(x1 , y1),B(x2 , y2),
則y1y2=﹣4,
則(y1y2)2=4x1x2 , 則x1x2=4,則 =x1x2+y1y2=0,
則 ⊥ ,則坐標(biāo)原點(diǎn)O在圓M上,
∴坐標(biāo)原點(diǎn)O在圓M上;
(Ⅱ)由(Ⅰ)可知:x1x2=4,x1+x2= ,y1+y2= ,y1y2=﹣4,
圓M過點(diǎn)P(4,﹣2),則 =(4﹣x1 , ﹣2﹣y1), =(4﹣x2/span> , ﹣2﹣y2),
由 =0,則(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,
整理得:k2+k﹣2=0,解得:k=﹣2,k=1,
當(dāng)k=﹣2時(shí),直線l的方程為y=﹣2x+4,
則x1+x2= ,y1+y2=﹣1,
則M( ,﹣ ),半徑為r=丨MP丨= = ,
∴圓M的方程(x﹣ )2+(y+ )2= .
當(dāng)直線斜率k=1時(shí),直線l的方程為y=x﹣2,
同理求得M(3,1),則半徑為r=丨MP丨= ,
∴圓M的方程為(x﹣3)2+(y﹣1)2=10,
綜上可知:直線l的方程為y=﹣2x+4,圓M的方程(x﹣ )2+(y+ )2=
或直線l的方程為y=x﹣2,圓M的方程為(x﹣3)2+(y﹣1)2=10.
【解析】(Ⅰ)方法一:分類討論,當(dāng)直線斜率不存在時(shí),求得A和B的坐標(biāo),由 =0,則坐標(biāo)原點(diǎn)O在圓M上;當(dāng)直線l斜率存在,代入拋物線方程,利用韋達(dá)定理及向量數(shù)量積的可得 =0,則坐標(biāo)原點(diǎn)O在圓M上;
方法二:設(shè)直線l的方程x=my+2,代入橢圓方程,利用韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得 =0,則坐標(biāo)原點(diǎn)O在圓M上;
(Ⅱ)由題意可知: =0,根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得k的值,求得M點(diǎn)坐標(biāo),則半徑r=丨MP丨,即可求得圓的方程.
【考點(diǎn)精析】本題主要考查了點(diǎn)斜式方程和斜截式方程的相關(guān)知識(shí)點(diǎn),需要掌握直線的點(diǎn)斜式方程:直線經(jīng)過點(diǎn),且斜率為則:;直線的斜截式方程:已知直線的斜率為,且與軸的交點(diǎn)為則:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了檢查本縣甲、乙兩所學(xué)校的學(xué)生對(duì)安全知識(shí)的學(xué)習(xí)情況,在這兩所學(xué)校進(jìn)行了安全知識(shí)測(cè)試,隨機(jī)在這兩所學(xué)校各抽取20名學(xué)生的考試成績(jī)作為樣本,成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀,統(tǒng)計(jì)結(jié)果如下圖:
甲校 乙校
(1)從乙校成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)恰有一個(gè)落在內(nèi)的概率;
(2)由以上數(shù)據(jù)完成下面列聯(lián)表,并回答能否在犯錯(cuò)的概率不超過0.1的前提下認(rèn)為學(xué)生的成績(jī)與兩所學(xué)校的選擇有關(guān)。
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
總計(jì) |
參考數(shù)據(jù) | P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | span>3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2 .
(2)若a+b=1,求證: + + ≥12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長(zhǎng)線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時(shí)直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】校運(yùn)動(dòng)會(huì)高二理三個(gè)班級(jí)的3名同學(xué)報(bào)名參加鉛球、跳高、三級(jí)跳遠(yuǎn)3個(gè)運(yùn)動(dòng)項(xiàng)目,每名同學(xué)都可以從3個(gè)運(yùn)動(dòng)項(xiàng)目中隨機(jī)選擇一個(gè),且每個(gè)人的選擇相互獨(dú)立.
(1)求3名同學(xué)恰好選擇了2個(gè)不同運(yùn)動(dòng)項(xiàng)目的概率;
(Ⅱ)設(shè)選擇跳高的人數(shù)為試求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20 , 接下來的兩項(xiàng)是20 , 21 , 再接下來的三項(xiàng)是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是( )
A.440
B.330
C.220
D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓: ,點(diǎn).
(1)求經(jīng)過點(diǎn)且與圓相切的直線的方程;
(2)過點(diǎn)的直線與圓相交于、兩點(diǎn),為線段的中點(diǎn),求線段長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若 =λ +μ ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點(diǎn),則f(x)的極小值為( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com