在如圖所示的空間直角坐標(biāo)系O-xyz中,原點(diǎn)O是BC的中點(diǎn),A點(diǎn)坐標(biāo)為,D點(diǎn)在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.

(Ⅰ)求D點(diǎn)坐標(biāo);
(Ⅱ)求的值.
(Ⅰ)(Ⅱ) 

試題分析:(Ⅰ)D在平面yoz上,可知橫坐標(biāo)為0,再由過D點(diǎn)作DH⊥BC,垂足為H.可知中坐標(biāo)為OH,豎坐標(biāo)為DH.
(Ⅱ)由向量的數(shù)量積可得.
試題解析:(Ⅰ)在平面yoz上,過D點(diǎn)作DH⊥BC,垂足為H.
在△BDC中,由∠BDC=90°,∠DCB=30°,BC=2,
,

(Ⅱ)由
由題設(shè)知:B(0,-1,0),C(0,1,0),

,
及向量數(shù)量積的夾角公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在圓錐PO中,已知PO=,☉O的直徑AB=2,C是的中點(diǎn),D為AC的中點(diǎn).

求證:平面POD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱錐PABCD的底面ABCD為一直角梯形,其中BAADCDAD,CDAD=2AB,PA⊥底面ABCDEPC的中點(diǎn).
 
(1)求證:BE∥平面PAD;
(2)若BE⊥平面PCD,求平面EBD與平面BDC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCDG,H分別是CE,CF的中點(diǎn).

(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,邊長為2的正方形中,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),將△、△分別沿折起,使、兩點(diǎn)重合于點(diǎn),連接,

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在空間直角坐標(biāo)系中有直三棱柱ABC­A1B1C1CACC1=2CB,則直線BC1與直線AB1夾角的余弦值為(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右圖,正方體的棱長為1.應(yīng)用空間向量方法求:

⑴ 求的夾角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)與點(diǎn),則線段之間的距離是             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間直角坐標(biāo)系中,點(diǎn)A(1,0,1)與點(diǎn)B(2,1,-1)之間的距離是(    )              
A.B.6 C.D.2

查看答案和解析>>

同步練習(xí)冊答案